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ABSTRACT 

In this paper we give a complete description of the points of reducibility, 

components and composition series of the degenerate principal series rep- 

resentations of the group Sp(n, F), F a non-archimedean local field, which 

are induced from a character of a maximal parabolic subgroup P -- M N  
with Levi subgroup M ": GL(n, F). We show that all of the reducibility 

is accounted for by submodules coming from the Well representation as- 

sociated to quadratic forms over F. The local results of this paper play 

an essential role in our extension of the Siegel-Weil formula relating theta 

integrals and special values of Eisenstein series. 

In t roduc t ion  

In this paper we will give a complete description of the points of reduction and 

the constituents of a certain family of induced representations of the symplectic 

group G = Spn(F ) over a non-archimedean local field F of characteristic zero. 
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More precisely, recall that G has a maximal parabolic subgroup of the form P = 

M N  with Levi factor M _~ GL,,(F) and unipotent radical N ~ Symn(F). For 

any unitary character X of F x and for any s E C, we consider the representation 

I(s,  X) = Indpa)C " I I ~ 

induced from the character m ~ x(det m)[ det m[ s, where the induction is nor- 

malized so that I(s,  X) is naturally unitarizable when s is pure imaginary. Such 

representations play a central role in our work on the Weil-Siegel formula [9, 

10,12,13] and hence, ultimately, in the study of the special values of certain 

Langlands L-functions [2,5]. In the real case, fairly complete information about 

the points of reducibility and about certain constituents of the [(s, X)'s was ob- 

tained in [11], although the precise composition series was not determined. In 

the non-archimedean case, the points of reducibility and a complete description 

of the constituents and composition series was given by Gustafson [3] provided 

the character X is unramified. Unfortunately, in global applications ramified 

characters will arise, and the method of [3] cannot be applied. 

In this paper we determine all of the points of reducibility for an arbitrary 

character X. More precisely, we have 

THEOREM: Assume that X is normaii~ed as explained in section 1, 

(i) I[ X 2 # 1, then I , ( s , X  ) is irreducible for a11 s. 

(ii) / f  X 2 = 1 but X # 1, then I , ( s ,  X) is irreducible whenever s does not lie in 

the set 

{ 4-( n + l  irr Z i~ Z w h e n n i s o d d  
- 7  + k ) + l o g q  l1 < k <  }U ¢ when n is even. 

(iii) I f x  -: 1, then I , , (s ,x)  is irreduelble whenever s does not lie in the set 

{+( n+12 +k)+logqiTr Z rn] {4----~n+l 27ri 

i~ Z when n is odd log q 

U ¢ when n is even. 

Next we describe constituents of the In(s, X)'S which are attached to quadratic 

forms and which account for all of the reducibility at points allowed in the pre- 

vious result. If V, ( , ) is a non-degenerate inner product space of dimension m 

over F,  and if m is even, then there is a subrepresentation Rn(V)  C / . ( s 0 , n v )  
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" " + '  and X v ( x )  = ( x , ( - 1 )  m12 det (V))E.  Here associated to V, where So = ~- - 2 

( , ) F  is the Hilbert symbol  for the field F and det(V) = det ( (v i ,vd)  ) for any ba- 

sis {v~} of V over F .  The  representat ion R , ( V )  (which need not be irreducible) 

may  be viewed as the image of the trivial representat ion of O(V),  the or thogonal  

group of V, under  the local the ta  correspondence. For convenience we state the 

result in the cases X ~ 1 and X = 1 separately. 

m n + l  with THEOREM: A s s u m e  that X 2 = 1 but that X ~ 1. Let So - ~ 2 , 

2 S m < 2n and m even. Let  V1 and V2 be the two inequivalent quadratic 

spaces over F with  dim Vi = m,  Xvl = X. They  are dist inguished by their Hasse 

invariants. 

(i) I f2 < m < n + 1 so that s0 < 0, then Rn(V~) and R,~(V2) are irreducible, 

R. (v , )  ~ R.(V~) is a submodule of I .(so, X) and the quotient 

x.(so, x ) / ( R . ( v ,  ) • R.(v~)) 

is irreducible 

(ii) I f  m = n + 1 (hence n is odd), so that so = O, then R , , (V , )  and R,(V2) are 

irreducible and 

I . ( so ,  X) = R, , ( t4)  ¢ RdV2) .  

(iii) I f  n + 1 < m <_ 2n, then R . (V~)  and R. (V2)  are m a x i m a / s u b m o d u l e s  of 

Xdso, .~) and R d V, ) n R,, ( V2 ) is irred.ci.~ I~. 

m ~+i with 0 < m < 2 n + 2  THEOREM: A s s u m e  that X = 1, and let, so - i 2 , - - 

and m even. Let 171 be the split quadratic space of  dimension rn. Also, i f  

4 _< m _< 2n + 2, let V2 be the quaternionic quadratic space of  dimension m (see 

section 3 for the terminology).  

(i) I f  m = 0 or 2, then R . (V~)  is irreducible and is the maximal  submoduIe  of  

/ . ( so ,  1). In the case rn = 0, R . (V~)  is the space of  constant  functions.  

(ii) / / '4  < m < n + 1 so that so < 0, then R . (V~)  and R. (V2 )  are irreducible, 

R . (V1 )  @ R . (V2)  is a submodule  of  I . ( so ,  1) and the quotient  

z.(so, 1)/(R.(v,)~ R.(v~)) 

is irreducible. 

(iii) I f m  = n + 1 (hence n is odd), so that So = O, then R . (V~)  and  R . ( V 2 )  are 

irreducible and 

M s o ,  1) = R . (V~)  • R d V ~ ) .  
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(iv) u. + i < m < 2,, - 2, then Rn(V1) and Rn(V2) are m~xim~d submodules  

of In(so, 1) and Rn(V1) f3 Rn(V2) is irreducible. 
(v)  I£m = 2n or 2n + 2, then R , ( ~ )  = In(So, 1), Rn(V2) iS a m a x / m a / s u b -  

module of In(so, 1) and R,(V2 ) is irreducible. 

In fact, the various subquotients may all be identified. For example, when 

r ~---+~ 1)/Rn(V2) = -nn(Vl)/Rn(V~) is m = 2n + 2 and X = 1, then the quotient -nt 2 , 
isomorphic to the trivial representation on the constant functions in I n ( - - ~ ,  1). 

Similarly, for m = 2n, the quotient In(so, 1)/Rn(V2) = Rn(Vi)/Rn(V2)is isomor- 

phic to the irreducible submodule Rn(V~,o) of In(--So, 1) associated to the split 

binary form VL0. In general when X = 1 and n + 1 < m _< 2n - 2, let V1 and V2 

be as in the previous theorem, and let V1,0 and V2,0 be the split and quaternionic 

quadratic spaces of dimension 2n + 2 - m respectively. Then 

nn(V, )/( nn(V, ) n R.(V2) ) ~-- Rn(V,,0) 

and 

Rn(V2 )/( Rn(V, ) n Rn(V2 ) ) ~- Rn(V~,o ). 

Analogous results hold when X # 1. 

We also describe the image and kernel of the normalized intertwining operator 

M.'(s ,x)  : -rn(s, X) ---* I n ( - s ,  X -1)  

in all cases (sections 5 and 6), and we determine all of the exponents, with 

respect to the Borel subgroup of Spn(F), of the representations In(s, X), Rn(V) 
and their various constituents (sections 4 and 6). For example, the representation 

R,(V1) f3 Rn(V2), which occurs as an irreducible submodule to the right of the 

unitary axis, turns out to have multiplicity free exponents. This rather striking 

fact depends on a somewhat tricky combinatorial fact about shuffles (Proposition 

6.2). 

Finally, it follows from our results that the representation R,(V)  always has a 

unique irreducible quotient. This is the Howe duality conjecture [6], [21] in our 

rather special situation, but without any restriction on the residue characteristic. 

The results of this paper are a necessary technical background for our forth- 

coming work on a general Weil-Siegel formula in the divergent range. They may 

also be seen as a kind of analogue of this formula over a local field. 
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We would like to thank J. Adams for useful discussions about the combinatorial 

problems of section 6. We would also like to thank the referee for useful remarks 

concerning the proof of Proposition 3.1 

1. P r e l i m i n a r i e s  

In this section we will set up the basic machinery which will be used throughout 

the paper. Our notation will be mostly that of [9,10,13]. 

Let F be a non-archimedean local field, which, for convenience, we assume to 

have characteristic 0. Let O be the ring of integers of F ,  and let T ~ = w O  be 

its maximal ideal with a fixed generator ~,. Let q = IO/7)1 = ]~1 - I .  We fix an 

additive character ¢ of F whose conductor is O. 

Let G = Gn = Spn(F ) be the sympleetic group of rank n over F.  Here 

and elsewhere we will often drop the subscript n unless it is required for some 

inductive argument. Let P C G be the maximal parabolic subgroup with Levi 

decomposition 

P = M N  

where 

t a-1 [ a • G L . ( F ) }  

and 

N = {n(b) = ( 1  ~ ) l b = tb • Sym, (F)} .  

Here S y m , ( F )  is the space of n x n symmetric matrices. We will sometimes refer 

to P as the Siegel parabolic. Let B C P be the Borel subgroup with unipotent 

radical 

(1.1) U = { rn(u)n(b) [u upper triangular unipotent and b • Symn(F ) } 

and Levi factor 

(1.2) A = { m(a) l a = d i a g ( a , , . . . ,  a , )  }. 

We fix the maximal compact subgroup K = Spn(O) of G, and for the Iwa- 

sawa decomposition G = P K  = N M K  we write g = nm(a)k for a = a(g) E 

G L , ( F ) .  While a(9 ) is not uniquely determined by this decomposition, the 

quantity [a(g)[ = [det a(g)[ is well defined. 
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Let X be a character of F x . For s E C, we let 1(8, x) = 1.(8, x) denote the 

normalized smooth induced representation, consisting of smooth functions O(s) 

on G such that  

(1.3) O(nm(a)g,  s) = x(a)lal "+p" O(g, 8). 

,,+l A section q(s)  E I(s, x) will be called standard if its Here p ,  = pp = 2 • 

restriction to K is independent of s. Note that this restriction determines ¢(~). 

As in [10,§4.], recall that  we have an intertwining operator 

(1.4) M(s,X)  : I ( s ,X)  ~ I ( -s ,  X -1) 

defined, for Re(s)  > pn, by the integral 

(1.5) M(s ,  X)@(g) = IN @(wng, s) dn 

1,, ) 
where w = - l n  E G. This operator has a meronmrphic analytic contin- 

uation to the whole s plane. 

Occasionally in this paper  we will normalize the character X as follows. The 

choice of prime element zz yields an isomorphism 

F x ~ 0  × x Z  

and a corresponding isomorphism of character groups 

where C 1 is the subgroup of C × of elements of absolute value 1. We assume that  

under this isomorphism, X corresponds to an element of (~× × 1, so that  X is 

trivial on w. Note that,  in particular, X is either trivial or ramified. Of course, 

an arbi t rary quasicharacter of F × has the form a ~ x(a)lal ~ for s in C, so our 

normalization of X does not restrict the generality of our results. The purpose 

of this normalization is to prevent an arbitrary translation, in the position of the 

poles, which could arising from a twist of X by some power of I I- 
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2. A criterion for irreducibility 

In this section we will compute certain Jacquet modules of In(s, X) and show 

that this representation is irreducible for s and X outside of a certain set. 

First we have [18] 

LEMMA 2.1: Let N be the unipotent radical of  P. Then, the Jacquet module 

In(s, X)N has all M stable filtration 

I.(s, X)N = I ° D I 1 D . . .  D I n D I n + l  = 0 

with successive quotients 

z (s,x) = z r / ±  TM 

where Qr C GL(n) is the maximal parabolic subgroup of. the form 

(o.) 
{ 0 b I a • G L ( n -  r), b • GL(r) }, 

and ~ is the character of Q~ whose value on an dement of the above form is 

x(det a)x(det -1 s+---=z--+-z b) [deta[ 2 [detb[ -~+'2-~-. 

Here normalized induction is used. 

Using this we obtain 

PROPOSITION 2.2: Assume that X is normalized as explained in §1. 

(i) 
d i m  HomG( Xn( s, X), In(--s, X -1 )) 

r ,ri Z for some r with 0 < r < n < 2 i f x  2 = l a n d s •  ~+log(q) 

- 1 otherwise. 

(ii) d i m H ° m c ( I , ( s , x ) , I , ( s , x ) )  < 2 if.)~ 2 = 1 a n d s  • Io--Q-~Z 
- 1 otherwise. 

Of  course, in the second case here the dimension is equM to 1. 

Proof." We simply note that 

Homc(I.(s, X),/ . f-s, X-')) = HomGL. (/.(s, X)N, x-' l  I 
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and so, by Lemma 2.1, 

tt 

dim Homa(I . ( s ,  X), I . ( - s ,  X - I  )) < E dim HomGL. (Z.(s,  X), X-l[  I - '+"").  
r---~O 

Next 

N 

rlomGL. (Zr(s, X), X-'I I -°+~") = HOmGL. (xl I °-~", Zr(s, X)) 

HOmGL._.xGL.(X[ l°-"" ,~r  " Q, ], 

where" denotes the contragredient representation. But 

~r" 610/2,(a, b) = x(det a)-a I det a l - ' -P"+rx (de t  b)[ det bl "-p" , 

and so this last Hom is non-zero only in case either r = n or 0 < r < n and 

x2(det a)[ det a[ 2s-r = 1. Note that our normalization of X implies that  either 

X 2 - 1 or X 2 is non-trivial on some unit, so that no solution of the last condition 

exists in that case. This proves (i). 

Part  (ii) is proved in the same way. | 

We use Proposition 2.2 to determine the number of possible irreducible sub- 

modules of I , (s ,  X). 

PROPOSITION 2.3: Assume that X is normalized as exp]adned in §1. Suppose 

that r; C In(s, X) is a G-submodule. 
(i) I f  x 2 = 1 and 

n - r  ia" Z 
s E - - - ~  + r logq  

for some r with 1 < r < n, then 

dim Homa(Tr, In(s, X)) < 2. 

(ii) Otherwise 

Proof." Given % 

dim Homa(% I , (s ,  X)) = 1. 

Homa(~', In(s, X)) = HOmGL. (~rN, xI I "+"")- 

Now we consider the generalized eigenspaces of 7rN and of In(s, X)N with respect 

to the action of the center of GLn, where the eigencharacter of interest to us is 
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# = (XI I "+p")n" First note that the central characters of the successive quotients 

Zr(s, X) of X.(s, X)N are 

z ~ X(z)n-2"lzl("-2")'+"("-")+"~7'~. 

and one of these coincides with # if and only if 

2~ri Z 
X 2 r = l  and - r ( 2 s + n - r )  E ~ • 

Clearly r = 0 yields one solution, while, if 0 < r < n, the condition on s is 

n - r  iTr Z 
s E - - - - ~  + r logq  " 

For a given s this can hold for at most one r. Recalling that  the filtration on 

In(S, X)N is decreasing, we obtain an exact sequence of generalized eigenspaces: 

o , I . ( s ,x)N(i , )  ,0,  

and thus a sequence 

0 ' Zr(s, X)(].t) n ?rN(~) , 7rN(l~ ) , C#. 

This give us a bound 

dim HOmGL. ('/l'N,/~) ~ 1 + dim HOmGL. (Zr(s, X), #)- 

The second term only occurs if, for our fixed s, there is an r which satisfies the 

above conditions. But, restricting to GLn(O), we have 

dimHomGL.(F)( Zr(s, X), #) <- dim HOmGL.(o)(Zr(s, X), #) 

= dim HOmGL.(O)(#, Zr(s, X)), 

since GLn(O) is compact and Z~(s, X) is admissible. 

By Frobenius reciprocity, this space is non-zero only when 

~ (a ,  b) = x(det a)x(det b) -1 = x(det a)x(det  b) 

for a E GL~(O) and b E GLn-r (O) ,  i.e., when X z = 1. Note that we are using 

the fact that X is normalized here. | 
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COROLLARY 2.4: If the condition of part O) of Proposition 2.3 holds, then 

In(s, X) has at most two irreducible submodules. Otherwise, In(s,x) has at 
most one irreducible submodule. 

We will now use Proposition 2.2 to show that In(s, X) is irreducible outside of 

a certain set of values of s and X- Several preliminaries will be needed. 

First we recall the normalization of the intertwining operator, which is defined 

as in [17]. Let 

[~] 
an(s,  X) = L( ,  + Pn - ~, X) 1-I L(2s - ~ + 2k, X~), 

k=l  

and [~] 
bn(s,X ) -~- i ( s  -~- Pn,X) H Z(2,s  -q- 7/, + 1 - 2k ,  X2),  

k= l  

where L(s,X) = 1 if X is ramified, and i ( s ,X  ) = (1 - X(w)q-S) -1 with w a 

uniformizing parameter for F and q the order of the residue class field, when X 

is unramified. Let 

1 
M*(s,X ) -- an(S,x) Mn(s,x) : In(s,x) ~ / n ( - - s , x - 1 ) ,  

where Mn(S,X) is the intertwining operator of (1.5) above. This normalized 

intertwining operator is entire and, for any fixed so, M,~(So, X) is not identically 

zero [17]. 

Next, if fl = t/~ E Mn(F),  recall that the generalized Whittaker functional 

WE(s ) is defined on In(s, X), for sufficiently large Re(s), by the integral 

fs ~(wn,,(b)g, s) ¢ ( - ~ r ( b ~ ) )  db. WE(s)(¢)(g)  = ym.(F) 

Karel [7] proved that if det fl ~ 0, then WE(s ) has an entire analytic continuation 

and satisfies a functional equation 

W#(-s)  o Mn(s, X) = 7n(s, x)WE(s). 

The function 7n(s, X) was computed by Piatetski-Shapiro and Rallis [16, Propo- 

sition 2.2], [17] 

1 --1 an(s,x) L(-s + ~,xEx ),n(s,x,~), 
~n(s,x) - bn(_s,x_l) L(s + ½,XEX) 
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where XO is the quadratic character associated to the quadratic form fl and 

e,(s ,x , /3)  has the form Bq s''s for constants B and Bq 

Combining these results, we conclude that 

* - - 1  * W/j(s) o M ~ ( - s , X  )oM~(s,x)  

1 1 
= a n ( - s , x - ' )  a . ( s , x )  7n ( - s ' x -a )Tn( s ' x )W#(s )  

1 
= b . ( - s ,  X- ' )b-(s ,  X) ~"(~' X,/~)e.(-s,  X -1, ~)W~(s). 

For convenience, we set 

1 
T/n(s, X) = bu(-s,  X -1 )bn(,s, X) ~n(s' X, ~)¢-.n(--S, X -1 , ~). 

LEMMA 2.5: Assume that X is normalized. 

(i) IfX ~ # 1, then bn(s,X) = 1. 

(ii) If X 2 = 1 but X # 1, then the poles ofbn(s,X ) are simple and occur at the 

points 
o + 1  

s e - - - - ~  + k + l--Q-~g q l < k <  . 

(iii) If x = 1, then the poles ofb.(s ,  X) are simple and occur at the points 

s ~ - - - ~  + k + i--j~g q l < k <  , 

and the points 
n + 1 2xi Z 

s E - - - - ~  + logq " 

Note that this lemma determines all the zeroes of the constant of proportion- 

ality ~.,(s. X). 

Finally, we will need a beautiful result of Waldspurger concerning contragre- 

dients of irreducible representations of G = Sp.(F).  Let 

0) 
0 - 1 .  E GSp.(F) ,  

and for any representation ~r of G let 
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Also recall that ~" denotes the contragredient of an admissible representation It. 

Then for any irreducible admissible representation ~r of G, [15, Chapter 4, II. 1, 

Th~orSme p.91] 

~rS ___ #. 

Moreover, since conjugation by ~ preserves the parabolic subgroup P and fixes 

the character of P which defines I,,(s, X), we have an isomorphism 

A : I , ( , ,  X)' _Z~ I,(s,  X) 

defined by 

(A¢)(g, s) = ¢ ( s - l  g~, s). 

Combining these facts with Proposition 2.2, we obtain 

THEOREM 2.6: A s s u m e  that  X is normalized as explained in section 1. 

(i) I f  x 2 # 1, then I , , (s ,x)  is irreducible for all s. 

(ii) I f  X 2 = 1 but  X # 1, then In(s,  X) is irreducible whenever  s does not  lie in 

the set  

. .  n + l  br Z iTr Z 
{ + ( - - - - - - ~ + k ) + l o g q  I X < k <  [ 2 ] } U l o g q  . 

(iii) I f  X = 1, then I~ ( s ,X)  is irreducible whenever  s does not  lie in the set 

n + l  iTr 7. . n + l  27ri Z iTr Z 
• 

Remark :  This result is almost sharp. In section 5 below we will prove that 
i*r when X 2 = 1 and s E 1-o-~qZ and n is even, then In(s ,  X) is again irreducible. At 

all remaining points we will exhibit proper submodules associated to quadratic 

forms (section 3) and will determine the composition series (sections 4 and 5). 

Proof: Suppose that W C In(s,  X) is an irreducible proper submodule and 

consider the short exact sequence 

0 , W --- ,  I , ( s ,  x )  ---* C ---* O, 

and its contragredient 

0 , ~ ~ x . ( - s , x  -1) - - ,  ¢¢ ,0.  
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Here we are using the fact that the contragredient of In(s, X) is isomorphic to 

In( -s ,  X -1). Using the result of Waldspurger, we then obtain a non-zero inter- 

twining operator 

T:  I n ( - s , x  -1) , I ;V  ~_ W '  ~ In(s,x) '  ~- In(s ,x) .  

Note that ker T = C # 0. Since C is non-zero by our assumption that W is a 

proper submodule, we may repeat this argument beginning with any non-zero 

irreducible submodule 

z c ~ c x~(-~, x -~)~ _~ z,,(-~, x -~) 

to obtain a non-zero intertwining operator 

T' : In(s,x ) ----* 2 ~- Z ~ C C C In(--S,X--'). 

Note that kerT '  "~ C ' ¢  0, where C' is the quotient I n ( - s , x - ~ ) / Z .  

The induced representation In(s, X) contains a subspace S of functions, sup- 

ported in the open cell PwnN. This space is spanned by functions of the form 

~(~.n(~) ,  s) = ~(b) 

for some T • S(Symn(F)) .  For such a function ~(s) we have 

w~(s)(¢)(~) = [ ~(~)¢(-tr(b~)) db = ~(~). 
Js Ymn(F) 

In particular, this integral is independent of s, and for any given ~0 • S(Symn(F)) ,  

there exists a fl with det fl ~ 0 for which W~(s)(~)(e) = ~(fl) ¢ 0. 

LEMMA 2.7: Assume that 

[bn(8, x)bn(_s, X-1)]-I # 0, 

and hence that ~n(s,x ) ~ O. Also suppose that i f x  2 = 1, then s is not in the set 

Z Then M*(s,X) and M ~ ( - s , x - ' )  are injeaive. log q " 

Proof.- As above, we consider the operator U * ( - s ,  X- '  )oU*(s, X): In(s, X) --* 

In(s, X). By (ii) of Proposition 2.2 and our assumption on s and X it follows that  

any intertwining map from In(s, X) to itself must be a scalar. Applying the 
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functional  W~(s) to a suitable function in S, we conclude that  this scalar must  

be ~?,(s, X). Thus  M*(s, X) must  be injective. Since our  hypothesis  is invariant 

under  s H - s ,  the same argument  shows that  M*(-s,  X -1) is also injective. 

Now suppose that  that  s is such that  [b,(s,x)b,(-s,x-1)] -1 ~ O, and that ,  

in the case X 2 = 1, s does not lie in the set logirqz" Then  either X 2 ¢ 1 or 

X 2 = 1 and q~ ¢ +1.  Thus  (i) of Proposi t ion 2.2 implies tha t  at least one 

of the spaces Homa(I,(s, X), I , ( - s ,  X -1))  and Homa(l,(-s ,  X -1), I,(s, X)) is 

one dimensional. Therefore either T is proport ional  to M,~(-s,x -1) or T '  is 

propor t ional  to .~,*(s, X). This yields a contradiction, since neither T nor T '  is 

injective when a proper  irreducible submodule  W exists. II 

i,~ Z in the cases X 2 = 1 We must  still prove irreducibility in the cases s ¢ log q 

but  n even. This case is more delicate and will be handled in section 5 below. 

3. S u b m o d u l e s  a s s o c i a t e d  t o  q u a d r a t i c  f o r m s  

When  the character  X is quadrat ic  and for certain values of s, the representat ions 

I(s, X) have submodules associated to quadratic spaces. In this section we do not 

require X to be normalized. 

First, following §1.2 of [13], we recall a few facts about  quadrat ic  forms. For 

a non-degenerate  inner product  space V, ( , ) over F of even dimension m, let 

z~x(g) ~- ( - 1 )  m/2 d e t ( V )  ff F x / F  x'e 

be the discrimina~t of V where det(V) = det((xl,xj)) for any basis x a , ' " ,  Xm 

o f V .  F o r x E F × , l e t  

(x) = A(v) )v ,  

where (., .)V is the Hilbert symbol for F .  The element A(V)  in F×/F x'2 is 

determined by Xv. The isometry class of V is then determined by m, Xv, and 

the Hasse invariant e(V), defined by 

, ( v )  = 

i<j 

if we take any basis {xi} for V such that  (xi,zj) = ~ijai [20]. Note then tha t  

if X and rn > 2 are fixed, there are precisely two isometry classes of forms of 

dimension m with XV = X, corresponding to the two possible choices of  e(V). 
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When m = 2 there are two forms when X ~ 1 and only one (the split form) when 

X = I .  

For a non-degenerate quadratic space V and for our fixed additive character ¢ 

of F,  let (wv, S ( V ' ) )  denote the Well representation of G realized on s(vr'), the 

space of Schwartz-Bruhat functions on V", in the usual Schr6dinger model. The 

action of G commutes  with the natural action of O(V) ,  and we will sometimes 

write coy(g, h) for the simultaneous operation of elements g ¢ G and h E O(V). 
Let R,(V) denote the image of the map 

s(v") x v )  

where 

-1 

and so = ~ -- p,,. This map induces ~n isomorphism [18], 

where S(V')o(v)  is the space of O(V}coinvariauts. 
A fact of fundan~ental importance for us is the ib!!ow;ng: 

Pao:~os~':tON 3 . ! . . I s . , u  ..... tfia~ , , . : -  dim(V) ~ ,, so that so < 0. Then R,,(V) 

is an ;.rreducible aria am~a~.;z~bIe ,.., -= G, ,~,odule. In fact, the restriction of this 

representation to 2' is Mso irreducible. 

Before giving the proof of this Proposkion we recall a construction of Li [14]. 

For c2: and q~2 E S(V'~), consider rile pairing defined by 

t 
(~,~2)~ = [ (~l,co(h)~o2)dh 

d o  (v) 

-- /o(v) / v .  cY,(x)cy2(h-1x) dx dh- 

Since we are assuming that  d imV = m < n, thc dual pai'c (G,O(V)) is in the 

stable range with O(V) the small grc, up. In this situation, Li proved that  the 

above integral is absolutely convergcnt for all ~I  and ~2, and defines a positive 

semi-definite, G invariant Hermitian form on S(V"). Let R C S(V") be the 

radical of this pairing. Then Li also proved [14 ,§5. ] that  the quotient 

H(1)  = S(V") /R  
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is a non-zero irreducible unitarizable representation of G. 

For fixed ~1 E S(Vn), the map ~ ~ (~, T~)t defines an O(V)-invariant linear 

functional on S(V"), and thus factors through Rn(V). In particular, there is a 

natural map 

Rn(v) ---, H(x) = s(v")/R. 

PROPOSITION 3.2: When dJm V = m < n, R,(V)  "" H(1). 

Proof." It will suffice to show that for any ~o E R, the associated function cI,(g) = 

to(g)qo(0) in In(so, Xv) vanishes identically. In fact, since R is stable under the 

action of G, it will suffice to prove that 

~(0) = f w  ~(x)ax = 0 

whenever q0 E R. 

Now if ~o 6 R, then for any ~01 6 S(Vn), we have 

(q0, q01) =/O(V) IV" q°(z)qOl(h-lx)dzdh 

= fv. fo(v) 
Let # be the moment mapping 

# :  V n --* Sym,(F) ,  x i-~ (x ,  2 )  = ( ( x i ,  x j ) ) ,  

where z = (zl ,  z 2 , . . . ,  xn) E V n. Then we let 

Vrng --- (Vn)res = {Z E V n [ z and #(z) have maximal rank }. 

Here the rank of z E V n means the dimension of the subspace of V spanned by 

the components of z, so that, for z E Vr~g this rank is equal to min(m, n) = m, 

and is likewise equal to the rank of the n x n symmetric matrix (z, z). Let 

Ov = #(Vrng) C Sym,,(F) be the image of Vr~g. We then obtain a submersive 

map Vr~ s ~ Ov and, by Harish-Chandra's result [4 , Theorem 11, p.49], a 

surjec~ive map 

s(v, g) S(Ov) 

~01 ~ M ~ t .  
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Taking ~ • S(V~g) above, and noting that for x e V,~ s, 

H . ~  = ,- '((~, ~)), 

we obtain 

where 

(~,~1) = fo F~(b) M¢'(b)d°vb' 
V 

? 
F~(b) = ]H ~(hx) dh, 

for any choice of x E V~g with #(x) --- b. By the surjectivity of ~ol H M~,I, we 

conclude that F~ -~ 0 on Or. But now 

~ ( 0 ) = / v  ~ ( x ) d x =  / ~(x)dx 

= / ~  F~(b) db=O. . 
V 

Proposition 3.1 is now equivalent to Li's result on H(1) .  

Remark 3.3: In fact, Li proves that H(1)  (and, indeed, the analogous space 

H(a) for an arbitrary irreducible unitary representation of O(V)) is irreducible 

when restricted to the maximal parabolic subgroup of G with Levi factor isomor- 

phic to GL(m) x Sp(n - m). | 

Next we consider the spaces R, (V)  for different V's. 

PROPOSITION 3.4: 

(i) Suppose that V1 and V2 are quadratic spaces of dimension m which are not 

isometric. Let so = ~- - Pn. If m _< n + 1, then R,(V1) and R,(V2) are 

inequivalent representations of Gn. 

(ii) If  Y is a quadratic space with dim(V) = m > 2n + 2, or dim(V) = m = 

2n + 2 and Xv ~ 1, then, for so = ~ - Pn, 

R.(V) = X.(So, xv). 

Observe that this assertion follows immediately from the irreducibility of 

I,(so, X) at this point. 

(iii) If  V is a split quadratic space with dim(V) = m = 2n + 2 or 2n, then 

n . ( v )  = r.(~o, 1). 
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Proof." When X is unramified, these facts are contained in the discussion, based 

on the results of [3], on pages 377-383 of [18]. We will give more or tess complete 

proofs here in the general case. 

For any quadratic space V of dimension m let/~ : V" ~ Sym, (F)  be the mo- 

ment map as above, and for/3 E Sym, (F)  let flZ = #-1(3) be the corresponding 

hyperboloid. It is a closed subset of V". Let ~ be the character of N given by 

¢~(n(b)) = ~b(½tr(b/3)). The following fact is well known [18]: 

LEMMA 3.5: 

(i) The twisted Jacquet fanctor S ( V " )  ----+ s(Vn)N,g,t~ can be explicitly r ea l  

ized as the restriction map S ( V " )  ) S(fl~). 

(ii) I£fl~ = O, then S(V")N,¢~ = O. 

(iii) I f  t3 E #(V~g) where V~s is as above, then f ~  is a single O(V)  orbit, and 

the space 

(v) ~ (s(v")  )) (s(v")  ) Rn N,~bZ- O(V N,,pt3 n,,p~ O(V) 

is one dimensional The map S ( V " )  ~ R. (V)N,~e is given by integration 

against an O(V)  invariant measure on ~ .  

Now if V~ and V2 are as in the Proposition with m _< n, the sets #(V~,~g) 

and #(V2',~,~s) are disjoint GL . (F )  orbits in Sym.(F) .  Thus the representa- 

tions R.(Va)  and Rn(V2) are distinguished by their twisted Jacquet spaces~ by 

Lemma 3.5. 

Next suppose that m = n + 1, and note that /3 E Sym.(F)  with det/3 ~: 0 is 

represented by V, i.e., is in the image of the moment map, if and only if 

e(V) = e(/3)(- det(V), det/3)F. 

LEMMA 3.6: / f  m = n + 1 m~d V1 and V2 are inequivalent quadratic spaces of 

dimension m, then there exist a/3 E Sym.(F)  with det/3 # 0 which is represented 

by V~ but not by Vs. 

Proof." If n >_ 3, and e(Va) # e(V2), we take/3 with det/3 = 1 and with e(/3) = 

e(V~). Then ~ is represented by Va but not by Vz. On the other hand, if e(V1) = 

e(V2 ) and det (1/1) # det (V2), we take/3 with det/3 such that ( -  det( V1 ), det ~) F # 

(-- det(V2), det ~)g and with e(/~) = e(V1)(- det(V1), det fl)F- Then, again, fl is 

represented by V1 but not by V2. When n = 1, our assertion is well known and 

can be checked by a similar argument. | 
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The combination of Lemma 3.6 and Lemma 3.5 proves that  Rn(V~) and Rn(V2) 
are inequivalent Gn modules. This finishes the proof of (i) of Proposition 3.4. 

Next we prove (ii). If dim(V) = m _> n, let vsnb be the subset of V n consisting 

of x whose rank, as defined above, is n. Note that  Vrng C Ysnb, and that  Vs~ b is 

the subset of V n on which the moment  map /z  is submersive. 

Now assume that  the restriction of the moment  map # to 

p : V~b ---~ Symn(F)  

is surjective, and recall that ,  when this is the case, the Weil orbital integral map 

[22]  

S(Vs~b) , S(Symn (F))  

is surjective. In fact, by Theorem 11 of [4], the function M~ is characterized by 

the fact that for any function f E S (Sym, (F ) ) ,  

/Vnub f(l£(X))~P(X) dx = ~Symn(F ) f(y)M~(y) dy, 

for our fixed Haar measures dx on V n and dy on Sym,,(F).  Since Vs'~b is open 

and dense in V n, we also have 

= 3f o dx 

= 7 • y ) ) U , ( y )  dy  
Symn (F) 

= 

where ]~r  is the Fourier transform of ~4~. 

Thus, since any function in S(Symn(F)) has the form 2~/~, for some choice of 

~, R,,(V) contains all functions in In(so,lg) which are supported on the open 

Bruhat  cell, i.e., the space 

I°P~n(so, X) = {~ E In(SO, X) I support((I)) C PwN}.  

It is clear that  this space generates In(so, X), as a G module. Thus R, (V)  = 

In(so,X) whenever m >_ n and the surjectivity assumption holds. But it is easy 
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to check that the required surjectivity holds precisely when V has isotropic sub- 

~paces of dimension n, and that these occur for the V's described in (ii) mad (iii) 

of Proposition 3.4. | 

Combining this result with (i) of Proposition 2.4, we obtain: 

COROLLARY 3.7: Assume that n is odd and X 2 = 1. Here X need not be nor- 

malized. Let V1 and V~ be the inequivalent quadratic spaces with dim(V~) = 

dim(V2) = n + 1 and Xv, = Xv2 = X. Here, i f  n = 1, assume that X ¢ 1. Then 

~n(Vi)  is an irreducible G module, and 

x.(0,x) = R . (v , )  R.(V,). 

SL"~f: Since In(0, X) is completely reducible, and we have in hand two subrep- 

z~sentations R,,(V1) and R,,(V2), which are inequivalent by (i) of Proposition 3.4, 

we need only exclude the possibility R,,(VI) C R,(V2).  But this is excluded by 

the fact that, via Laminas 3.4 and 3.5, there exists a fl for which R,,(V~)N,¢~ # 0 

but R,,(V2)N,~ = 0. Recall that the twisted Jacquet functor is exact. | 

J~emark: Note that under the hypotheses of CorollmT 3.7 but with m < n, we 

have a submodule 

n . ( v , )  c x). 

4. T h e  NI J a c q u e t  m o d u l e s  and e x p o n e n t s  

We now let/)1 C G be the parabolic subgroup which stabilizes an isotropie line, 

and chosen so that P1 D B, our fixed Borel subgroup. Then P1 = MIN1 where 

M1 ~- GLI(F)  x Sp, ,_I(F ) = GLI(F)  × G,,-1, 

and 

N l = { r a (  0 ln=l 

We compute the 3acquet funetor of I,,(s, X) relative to N1. 

PROPOSITION 4.1: As an M1 "2_ GL1 x Sp,,-1 module, the space I,,(s,X)N, has 

two composition factors: 

(i) the quotient module (X" [ [~+o.) ® In- l (a  + {,X), and 

(ii) the submodule (X -1 .  II - '÷o-)  I ._1(s - ½,x). 
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More precisely, there is an exact sequence 

1 
0 , X-1I I -s+w ®In- l (s  - 5,X) ~ I.(s,X)N1 

a I ,+p~ I,,-1(s 1 

Moreover, i f  (X ®1 1°) z # 1, then this sequence splits and I.(s,X)N, is a direct 

sum of the spaces (i) and (ii). 

Proof." The proof is a standard calculation on Jacquet modules based simply on 

the fact that there are two elements in the double coset space P.\Spn/PI .  

First, fl is simply given by the restriction of functions to M1. Next, to describe 

a,  recall that [12] 

G = P,,Pt HP,~wIP1 

with (o 1 ) 
1,-1 

wl = - 1  0 ' 

ln-1 

and that wl commutes with the Sp(n - 1) factor of M1 and acts by inversion 

on the GL(1) factor. The kernel of the map ~ is the image in In(s, X)N1 of the 

space Tn(s) of all q'(s) e I , ( s ,x )  which have support in the open cell P,  wlP1. 

For such a function ~(s), the map to the Nl-coinvariants may then be realized 

via the intertwining integral 

where 

U(s)~(g) = fu V(w,ug,,) du 
1 

(1 • o)} 
U1 = / 1.-1 0 0 

1 0 " t .  

--tx ln_ 1 

Here we take g E M ,  (or even in S p ( n  - 1)). Note that this function transforms 

by the character It[ -s+p'~ of the GL(1) factor of MI [12, (1.2.9)]. Also note that,  

since the support of • is required to lie in the open cell PnwlP1, this integral 

will be absolutely convergent for all s. In fact, since 

v.\v,,wlP, ~_ v ,  × ( ( P .  n Sp(n - 1 ) ) \Sp(n  - 1)) ,  
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there  is an i somorphism 

1 1 
Tn(s) ~- S(U, ) ® I,,_, (s - ~, X) ~- S ( F " - ' )  ® S(F)  ® I . _ ,  (s - ~, X). 

For c21 ® 9~2 ® ¢2 in the space on the right hand  side, we set 

(I)(wlU(Z, y)g, 3) = ~l(X)~P2(y)~(g) 

and have 

u(~)¢(g)  = ~ , ( 0 ) ~ ( 0 ) ~ ( 9 ) .  

Thus  U(s) is surjective for all ~, and it is easy to check tha t  it induces an iso- 

m o r p h i s m  
1 

T(s)N, --~ I , , _ , ( s -  -~,X). 

It  follows tha t  the m a p  U(s) induces the inverse of a on the subspace T(S)N, in 

In(So,X)N1. 

The  direct sum proper ty  follows f rom the disjointness of the characters  X ® 

[ ]s+a. and X -1 @1 ]--,+Pn under  the hypothesis  of the Proposi t ion.  1 

Next  we calculate R,,(V)N, for a quadrat ic  space V. If  V is isotropic,  we let 

V'  be the quadra t ic  space obta ined  by deleting a hyperbol ic  plane form V. Note 

tha t  V t is unique up to isomorphism,  by Wi t t  cancelation. 

PROPOSITION 4.2: Assmne that ~2 = 1 and let V be a quadratic space with 

d im(V)  = m and k'v = X. Let so = y - p~. Then 

(i) As .hll '~ GLa x Spn-1 modules, the sequence 

1 
' XI I ' ' + 1 - ~  ~ I , , - l (S0 - F ,X)  --% I,,(so,X)Nl 

13 -, 1 
xl I ~ ® I._:(~o + i ,x) 

~S exact. 

(ii) As MI ~- GL1 × Sp,~_ 1 modules, the sequence 

>0 

0 xl I ' '+ ' -~  ® R . _ , ( V ' )  "' a' ) ) Rn(V)N,  ) XI [ ~ ~ R n - l ( V )  ) 0 

is exact.  /-/ere, i f  V is isotropic, V ~ is the quadratic space of dimension 

m -  2 defined above, f f V  is anisotropic, then R n _ I ( V  t) is taken to be zero. 
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(iii) The n a t u r a / m a p s  between terms of the two sequences y / e / d  a commutat ive 

diagram 

o ---, xl I "+1-~ ®x.-~(~o - ½,x) ~, /.(~o,x)N, 

i" T i T 

o ---, xl I "+~-~ ® R._~(W) °', R.(V)N, 

1 , xll~-®1._~(~o+~,x) ---, o 

T 
/~, 

, xl I ~ ® R . _ , ( V )  ~ O. 

/ /ere i is the naturM map, and i" is a non-zero multiple of the naturM map.  

Proof: Par t  (i) is just  a special ease of Proposition 4.1. 

Next we begin to compute R,(V)~ h . Consider the exact sequence, induced by 

restriction of functions to the subspaee of V n where the first component is zero: 

o , x  , s ( v")  , x l l  ~ s ( V  "-~)----,o 

~ ~(01.) .  

Here X is the kernel of the restriction map,  and we view these spaces as P1 x O(V) 
modules. Taking Nl-coinvariants, we get an exact sequence 

o ,xN~ ,S(V")N, 'x l t  - ~ s ( V  "-1) ,0, 

since N1 acts trivially on the third term. At this point it is tempting to simply 

take the O(V) co-invariants: 

(XNt)O(V) ---"* Rn(V)N, - -~  X] i ~ ~ Rn-I(V)  ~ O, 

but  since this sequence is not necessarily left exact, we must proceed more care- 

fully and give a more precise description of XN,. 

Fix a non-zero isotropic vector z0 E V and let Q1 c O(V) be the subgroup 

which stabilizes the isotropie line F -  z0 = <  z0 >. Note that  a Levi factor of Q1 
is isomorphic to GL(1) × O(V') where 

v' = zo~ / < zo > .  

Also let Q0 be the subgroup of Q1 which fixes zo. 
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Let N o = N1 N N ,  and note that there is an isomorphism 

S(V")N~ _Z~ S(n , )  

given by restriction of functions to 

fix = { x = [xl,x2] I xx E V, x2 E V "-1 with (x l ,~ l )  ~- 0,  ( X l , X 2 )  = 0 }. 

Let fl~ be the open subset of z E fll for which zl # 0. Then there is an exact 

sequence 

0 , xu~ , s(v")N~ , xll  ~ ® s ( v  "-1) ,o 
tT tT 

s(n~ °) s(n,) 

Note that,  for our fixed isotropic vector x0, 

~ = o ( v ) .  { [ . 0 , . ] l x  e <  ~0 >± }. 

Now for ~0 6 S(V") ,  define a function ~0' on GL(1) x V ' , ' - I  by 

( ' -)  ~o'(t,x')= ._1 w(m( 0 1,-1 ))~o(txo,x)du, 

where x E< x0 >J- is any preimage of x ~. Note that this function lies in 

S(GL(1)) ® S(V  ' ,n-l)  precisely when ~ E X. Finally, for h E O(V) and ~o E X ,  

define 

f~(h) = (w(h)~o)' E S(GL(1)) ® S(V"" - I ) .  

These considerations yield the following result [8] 

LEMMA 4.3: As representations of O(V) x M1 

T lO(V)xMlt_~ 
XNI ~-- InQQlxM1 t,o) 

where 
(n-l) 

a = ~ ®wl Qgw v, 

is the representation of Q, x M1 on the space S(GL(1)) ® S ( V  ''"-1) given as 

follows: a is trivial on the unipotent radical of QI. The GL(1) in the Levi factor 

of Qx acts by the product of left translation on S(GL(1)) with the character 
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I I ' - ~ .  The GL(1) in M1 acts by the product of right translation on S(GL(1)) 

with the character X[ [,,-1+-~. Finally, the group O(V') x Sp(n - 1) acts in the 

usual way, as a dual reductive pair, in the space S(VI,n-1). 

Finally, we compute the O(V) coinvariants in this induced representation. For 

this we use the following observation. Suppose that Q is any parabolic subgroup 

of H = O(V) and that (a, W) is a smooth representation of the Levi factor M 

of Q, viewed as a representation of Q, trivial on the unipotent radical of Q. Let 

pr~ : W ---* WM,$o be the natural projection of a ® ~f~ to the maximal quotient 

on which M acts by the character ~Q. Let 

C H J Q  ¢(h)dp(h), 
\H 

be the H invariant linear functional, induced by some choice of a Haar measure 

on H, on the space of functions on H for which ¢(qh) = ~q(q)¢(h) [1]. Here gQ 

is the modular function of Q. 

LEMMA 4.4: There is a natural isomorphism 

Ind~(a)H ~ aM 

f ~'* I Pro(f)- JQ \H 

We apply this in our case, with 

w = S(GL(1)) ® S(V',n-1). 

1 

Note that, via or ® 5~,, the GL(1) in the Levi factor of Q1 acts on functions in 

W simply by left multiplication on the GL(1) argument. We thus take 

pr=: S(GL(1)) ® S(W '"-1) ---, R,_ , (V ' )  

given by 

pr~(:')(9) = f~x (~(~",-')(g):')(t, 0)ttl ~ -~  dXt. 

Note that for t E F x "~ GL(1) in the Levi factor of Q1, 6o,(t) = It[ m-2. This 

yields an isomorphism (the inverse of hi): 

(xN,)o(v) ~, xI I "+ ' -~  ® R._,(v') ,  
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g iven by 

f~ ~ ~/o, \o(v) P r ' ( L ' ) ( h )  @(h) 

= fQ~\o(v)/F~ (@2-')(g'h)~)'(t'O)ltl''-~ dXtd#(h) 

=/QikO(V)/F× /F~_I ¢d(m((XD ~)))(;°(vn'(gsh)go)(txo,O)ltlm-2dX~d]z(h) 

So far we have a commutative diagram: 

o ~ xl I " + l - { @ I n - ' ( s o  - 7,X)1 _~+ 

G¢ 1 

xl I '~+'--~ ® R._ , (v ' )  

______+ 

In(SO,X)N~ 
iT 

R.(V)N,  

T 
--> O. 

The map i o a r has image contained in the image of a,  via the exactness of the 

right side of the diagram, and we thus obtain a map 

1 

~- '  oio~' : .~l F '+ ' -~  +Rn- , (V ') --~ (XN,)O(V) ---' "d i"+~-+ + I . - , ( ~ 0 -  ~, ~). 

VVe will now show that  this map is a non-zero muitiple of the natural  map i' 

between these spaces. To do this, take ~ E X and a, ~ Sp(n - 1 ~ and let 

be the corresponding function in ]-,(s0,X). According ~o the description of a 

give.c, above, the corresponding function in 7,-<(so + ½, X) is given by 

--: fd @(uhu,g~,s~)du~. 1 

J U  1 

-= "/l " IuI /v U)(Ulgl )c/~(v, O) d'J dul 

= 71" .-~ ¢(2 y(v'v))w(m( 1,,-1 ))w(gl)p(v,O)dv dxdy. 
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Here 71 is the four th  root  of uni ty  which occurs in the act ion of Wl. For a momen t  

we write ~ in place of  w(m(  ( 1  x ) 1 . -1  ))w(g~)~, and consider the inner  integral: 

ff fvC(2Y(V,V))~(v,O)dvdy 

=Mr(O) 

= f-'(o)r o) dr(v) 

= JQI\O(V)IF× "'(h)~(tx°'O)[tlm-2~×tdh" 

Here we have used the orbi ta l  integral  m a p  discussed above, in the case n = 1, and 

have taken a sui table normal iza t ion of the linear functional  f .  A more  detailed 

discussion of the m a p  ~2 ~-+ M~ in such a s i tuat ion can be found in [19 , §2]. 

( ) Replacing qv with w(m(  1 z ))w(g~)~ in this last formula,  subs t i tu t ing  the 
ln -1  

result  into the outer  integral  above, and compar ing  the result ing expression with 

the image of f~, in R , - I ( V ' )  computed  earlier, we find tha t  the m a p  c~ -1 o i o c~ ~ 

is 7~-1 t imes the na tu ra l  map ,  for the choice of measures  we have made.  
i Since the na tu ra l  m a p  i' : R,~_~(V') , . ' ,~-:(s0 + ~,.'() is injective [181, we 

conciude tha t  ~ '  nmst  be injective as well. Moreover we obta in  the comuta t ive  

d iag ram of (iii) with i" = 7~ -~ • i'. This concludes the proof  of (ii) and (iii). Note 

tha t  (ii) is a special case of Theorem 2.8 of [8]. !1 

~Nre m a y  now use Proposi t ions  4.1 and 4.2 to compute  the exponents  of the 

representa t ions  [ , ( s , x )  and R , ( V )  along the Borel subgroup.  More precisely, 

recali tha t  U is the unipoten t  radical of our fixed Borel subgroup  B, and tha t  

B = A~; = UA for tt.~e diagonal  subgroup A as in section i. For any admissible 

representa t ion  ~r of G the exponents  of rr along B are, by definition, the characters  

tt of A such tha t  a ~+p occurs in a generalized eigenspace decomposi t ion of the 

Jacquet  module  7rv. Here p = pB = (n, n -- 1 , . . . ,  1). Since U contains N1, we 

m a y  compute  7ru in stages as (TrN,)UnM~. 
Suppose tha t  (al, a2 , . . . ,  a~; b l , . . . ,  b,_~) is an ordered n- tuple  of numbers  

which is divided into two subsets,  the first r and the last n - r. We will call 
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any permutation of this set which preserves the relative ordering of the subsets a 

8huff/e of the set. Thus for a shuffle, al will still come before a2, etc. Note that 

the number of possible shuffles is (~). 

PROPOSITION 4.5: The representation I , ( s ,  X) has 2" exponents which may  be 

described as follows: For each r, with 0 < r < n, every shuffle of the n-tuple 

( 1 - a - p n , 2 - 8 - p n , . . . , r - s - p n ; s + p •  - n , . . . , s + p ,  - r -  1) 

is an exponent. Moreover, these exponents are to be counted with multiplicity. 

The exponents of R , ( V )  have a similar description: 

PROPOSITION 4.6: Let £ be the Wit t  index of V, i.e., the dimension o fa  max./ma/ 

isotropic subspace of V. Then for each r, with 0 < r < min(n,£), every shuffle 

of the n-tuple 

m m m m m 
( 1 -  -~-,2 - -~ - , . . . , r  - ~-; ~- - n , . . . ,  -~- - r - 1) 

is an exponent of R , (V) ,  and these are all of  the exponents. Again, these expo- 

nents are to be counted with multiplicity. 

Proof." We simply must keep track of the sequence of characters of GL(1) which 

arises as we repeatedly apply either (i) or (ii) of Proposition 4.2. At each step 

there will be two choices. If we take a term involving So - ½ in (i) or one involving 

V' in (ii), we will say that we have moved 'left'; otherwise we will say that we 

have moved 'down'. A little inspection reveals that the exponent which arises 

on the first 'left' move, regardless of the number of intervening 'down's', will be 

1 - ~ .  Similarly, the second 'left' move produces 2 - T,m etc. Likewise, the 'down' 

moves, as they occur, yield successively ~ - n, ~ - n + 1, etc. The choice of the 

sequence of 'left' and 'down' moves yields an arbitrary shuffle. However, in the 

case of Rn (V)  the number of 'left' moves cannot exceed the Witt  index ~ of V, 

since each such move requires the removal of a hyperbolic plane from the part of 

V which remains at that step. | 

5. Constituents and intertwining operators 

With the hard work of section 4 completed, we may harvest some consequences. 

First we take care of the two points where we have not yet proved the claimed 

irreducibility of In(s, X). 
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PROPOSITION 5.1: Suppose  that n is even and that  X ~ = 1. Then  I , ( s , X )  is 
ilr i~ irreducible at the points  s = 0 and s = ~ ,  i.e., at all points  s E i~--ff~gqZ. 

Proof." For convenience of notation, we consider the point s = 0 (the argument in 

the remaining case is identical ) and suppose that I,'(0, X) is not irreducible. Since 

we are on the unitary axis, Corollary 2.4 implies that I,'(0, X) = W1 @ W2 with 

WI and W2 irreducible. This implies that the exact sequence of Proposition 4.1 

I 1 ~, 0 ,xl  IP°® )I,'(O,X)Nz 

splits. In fact, The image of WI,N, (say) under fl must be non-zero, and hence, 

since I,'_,(½, X) is irreducible by Theorem 2.6, W] must map onto 1,,-1(½, X). If 

this surjection has a non-zero kernel, the irreducibility of I,,-1 [ - ! ,  X~ (again by k 2 / 

Theorem 2.6) would imply that W1,N, = I,'(0, X)N,.  This in turn would force 

W2,N~ = 0 which contradicts the faithfulness of the N1-Jacquet functor. Thus 

the restriction of fl to W1,N, must be an isomorphism and the sequence splits, as 

claimed. 

But we have 

LEMMA 5.2: For n even and X 2 = 1, the sequence 

o xl I ® z,'-,( -1  z.(0,x)N, xl l  z 1 ) ' ~ ~ n-- l (~,) ( ' )  "-'--+ 0 

does not  split. 

Proof'. If the sequence were split, then the GL(1) in the Levi factor M1 would 

act by the character X[ [P" in I , (0,  X)N~. To see that this is not the case, consider 

an arbitrary standard section O(s) E I , ( s ,  X) and an element 

t = t(a) = m 1.-1 E M1. 

Let rs( t )  denote the action of t in the representation In(s ,  X). Since t acts by the 

scalar x(a)]a] p" in the quotient, X[ [P" ® I, '-1( 1 ~, X), the image in I,'(0, X)N, of 

the function 

r o ( t ) ~ ( O )  - x(a)la["" ' I ' (0 )  

lies in the kernel of ft. Since the inverse of a is given by the integral U(0), it will 

suffice to show that 

U(O) [ro(t)¢(O) - ~(a)]a[ p" ~(0)] ~ 0 
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for some choice of +(s).  Note that  the integral defining U(O) only makes sense 

for the difference and may not converge when applied to the individual terms. 

On the other hand, for large Re(s), we may write 

U(s)  [ , - , ( t )~(s)  - x(~) lal  ~+°'' ~(s) ]  -- u (s )  [r.~(t)~(s)] - x(a) IM s+'°" U (s )~ (s )  

- -  [ X ( . ) l a l  - s + 0 "  - X(a)lal s+°o] S ( , ) ¢ ( * ) ,  

since U(s) is then defined and intertwining on the whole space In(s, X)g,. The 

quantity [ x ( a ) l M  - ~ ÷ o o  - X(a)lal ~÷o"] has a simple zero at s = 0. On the other 

hand, it is shown in [12,  Proposition 1.2.4] that the intertwining operator  U(s) 

which is defined by the integral U(s) for sufficiently large Re(s) has a mero- 

morphic analytic continuation and developes a simple pole at s = 0 when n is 

even and X 2 = 1. There exists a standard section cI,(s) for which the residue of 

U(s)~(s)  is non-zero at s = 0, and we then conclude that 

= x(a)lal°.(-21og [al) • R_eas(U(s)@(s)) 

¢ 0 .  

Thus t does not act by a scalar in/,~(0, X)Nt and our sequence is not split. I 

In particular, the representation I,(O,x) must be irreducible and Proposi- 

tion 5.1 is proved. | 

We now turn to the points of reducibility and determine the disposition of the 

submodules R,(V). 
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PROPOSITION 5.3: Suppose that 1/1 and 1/2 are inequivalent forms such that 

dim(V/) = m and)cv~ = Xv= = X, and suppose that m >_ n +  1. Then, for  

SO = ~ - Pn ,  

X (so, x) = + 

Proof: First  observe tha t  when so = 0 or when so >_ Pn, our  assert ion is a l ready 

contained in Corol lary 3.7 or in (ii) and (iii) of Proposi t ion  4.2. In  par t icular ,  

our  claim is proved when n = 1. In general, since the N1 Jacquet  functor  is exact 

and non-zero on all const i tuents  of I , ( s ,  X), it suffices to prove tha t  

*.(s0, x)N, = (2%(v,) + 

and this follows by induct ion on n, using (iii) of Proposi t ion  4.2, r emember ing  to 

shift the sequence by --pB. Note that ,  in this induction,  we need only consider 

1 is always covered by the induction so > 0, so tha t  the t e rm involving so - 7 

hypot!lesis.  | 

I11 the discussion which follows we will need a few more  conventions. For any 

quadrat ic  space V with n + ! _< m = dim(V) _< 2 n + 2 ,  let 170 denote the 

%omplementa ry '  quadrat ic  space of dimension 2n + 2 -  m, if it exists. This  space 

is de te rmined  by the condition tha t  V + ( - I /0 )  is the split space of dimension 

2n + 2, where -t '% denotes the space I/% with the negat ive of the original inner 

product .  Note that ,  if I~,, is a maximal  anisotropic subspace of V (this is uniqv, e 

up to isometry) ,  then bo th  V and V0 m a y  be ob ta ined  by adding split spaces 

of sui table dimensions to V~n. In the ex t reme case in which V is a split space 

of dimension 2n + 2, we have V0 = 0. No such complemen ta ry  V0 exists in the 

following cases: 

(i) d i m V  = 2n + 2 and )C ~ 1 or ,g = 1 and V is quaternionic,  i.e., V is the 

or thogonal  sum of a quaternion norm form with a split space of dimension 

2n - 2. 

(ii) d im V = 2n and V is quaternionic.  

Whenever  a space V and its complement  170 are refered to in what  follows, we 

implici t ly assume tha t  these possiblities (i) and (ii) for V are excluded. 

Recall tha t  there is a non-degenerate  sesquilinear pair ing 

x) ® x) c 
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given by 

< ¢1(s) I ¢~(-~) >= [ ¢l(wn(b) ,s )~2(wn(b) , -~)  db 
.Is ym,,(y) 

for 01(s) • I,,(*,X) and 02(-~) • I . ( -$ ,X) .  For V and Vo complementary, as 

above, the restriction of this pairing to 

R.(V) ® R.(Vo) , c 

is nonzero [18, p.369 and p.380], while, if U is any quadratic space of dimension 

2n + 2 - m with Xv = X which is not complementary to V, then 

n.(v) c n.(v) ' .  

Thus we have 

LEMMA 5.4: Suppose that V is a quadratic space with n + 1 < m = dim(V) _< 

2n + 2, and let Vo be the complementary space. Then 

dimHoma(R~(V), R,(V0)') ¢ 0. 

Moreover, in this case, Rn(Vo ) is unitarizable, and so 

dimHoma(R,(V),  Rn(Vo)) # O. 

Proof'. First note that, for any quadratic space V, the conjugate wo,y of the 

Well representation wO,v of G = Sp,(F)  associated to V is equivalent to the 

Well representation wO,-v, associated to - V .  Therefore, the non-triviality of 

our sesquilinear pairing on R , ( V )  ® Rn(Vo) follows from the discussion on p.380 

of [18]. The unitarizability of R~(Vo), given by Proposition 3.1 above, implies 

that 

R.(Vo)'~_ R.(Vo), 

and immediately yields the last assertion. | 

These facts will be useful in a moment. 

PROPOSITION 5.5: Let V1 and V~, etc. be as in Proposition 5.3, with n + 1 <_ 

m <_ 2n + 2, so that 0 <_ so <_ p~. Assume that complementary quadratic spaces 

Vl,o and V2,o exist. Then 

M*(so)(R,(V~)) = Rn(V/,o) 
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and 

M . * ( S 0 ) ( Z . ( s 0 ,  x)) = R.(v,,0) • R.(V2,o). 

Moreover, i f  m = 2n + 2 or 2n and X = 1, let V1 be the split form and let V2 be 

the quaternionic form of dimension m. Then 

= = R.(V,,0). 

Proof." At first we exclude the cases in which a complement fails to exist for one 

of the spaces l~, and we also exclude the case so = 0. Then, by Proposition 4.4 

of [10], we have 

dimHomo(R.(V/) ,  I . ( - s o ,  X)) < 1. 

On the other hand, any intertwining map from R, , (~)  to R.(V~,0) yields an inter- 

twining map from R.(P])  to I . ( - s o ,  X). Note that,  since R.(V/,0) is irreducible, 

any non-zero intertwining map from R.(I,~) to this space must be surjective. 

Thus, by Lemma 5.4, we must have 

dimHoma(R,(I,~),  R . (~ ,o) )  = 1, 

and the restriction of M,](so) to R,,(V~) defines an dement  of this space. If this 

dement  is non-zero, then its image is precisely R.(V/,0). 

Thus it suffices to show that M*(so)  is non-zero on the space Rn(~) .  Since 

M*(so)  is not identically zero, it must be non-trivial on at least one R.(I,]),  say 

R,,(V~ ), by Proposition 5.3. Thus we obtain M,~ (so) (R . (V1  )) = R,, (Vl,o). 

If X # 1, choose an element a E F x such that x(a)  # 1. Then the space V~ 

may be taken to be the space V1 with the inner product scaled by the factor a, 

i.e., we may take V2 = a • V1, in an unfortunate but temporary notation. Let 

r"=( I" a.I.)6GSp"(F) 

and let W~,v, be the conjugate of the Well representation wq,,vl by the outer 

automorphism Ad ra of G = Sp.(F) .  Then 

t l  
W,l, , V ~ "" wq, ,a. v~ '~ we,v2. 

Using this and the fact that Ad ra preserves In(s, X), viewed as a space of func- 

tions on G, it is not dimcult to check that R. (V1 )  and R.(V2) are switched by 
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Ad r~ and similarly for R,,(VI.o) and R,,(V~,o). Finally, since 

~ym.(F) O(v~Zwn(x)gva,s)dx = fsym.(F) o( ( a a-z ) wn(ax)r~'X gva,s) dx 

= x(a)lal'~°+o.)-"p.M.(s)O(r~'zgr~), 

we h a v e  

M*(s0)( Ad r. . O) = x(a)lal ' ' ° .  Ad r.(M*(so)¢). 

Thus we obtain the required assertion M*(so)(Rn(V2)) = R,,(V2,0) by applying 

Ad ra to the corresponding assertion for R,,(V1). 
Next suppose that X = 1. In this case we know that the K = Spn(O ) types 

in IndKnK(1) occur with multiplicity one [17]. This implies that the restriction 

of the normalized intertwining operator M*(s) to any K type 0 in In(s, 1) is a 

scalar operator Ao(s) = co(s). Id0 where co(s) is an entire function of s. We note 

that the property 

M~(-s) o M*(s) = [b,(-s)b.(s)]-' . Id 

implies that 

c 0 ( - s ) c 0 ( s )  = [ b . ( - ~ ) b . ( s ) l  -~ 

for all 0. But then, if so is as in our Proposition (and so # 0!!), bn(s) -z vanishes 
at s = - so  and is nonzero at s = So. Hence either co(s) or co(-s) (but not both) 

admits a zero at s0! On the other hand, (i) of Proposition 4.4 of [10] implies that 

dim Homa(Rn(l,],0), I.(so, 1)) = 0. 

Thus any 0 which occurs in Rn(V/,0) lies in the kernel of M*(-so) and hence 

has eo(-so) = 0 and co(so) # O. Thus R,,(Vl,o) @ R,,(V2,0) lies in the image of 

Mn*(S0). If R.(V2) were in the kernel of M.*(s0) we would have 

M*(so)(In(so, 1)) = M*(So)(R,(V1) + R,(V2)) 

= M~(s0 ) (R . (Vl ) )  

~--- Rn(Yl ,o) .  

Thus Rn(V2) cannot lie in the kernel, unless Rn(V2,0) = 0. But, when the 

complement V2,0 exists, the space Rn(V2,o) is non-zero. This proves that Rn(V2) 
is not in the kernel of M* (s0) and yields our assertion. 
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Next we suppose that  m = n + l  so that  So = 0. We already know that  

I,(O,x) = R,(V~) (9 R,(V~) and that  the R , ( l~ ) ' s  are irreducible and inequiv- 

alent. Thus M*(0) must be an isomorphism on at least one of the R,,(V~)'s. If  

X # 1, we may interchange the two constituents, as before. If X = 1, then we 

again consider the ce(s)'s. Note that  

b n ( s , 1 ) = ¢ ( s + p , ) H ~ ( 2 s + n + l - 2 k ) ,  
k=l  

with ~(s) = (1 - q - , ) - l ,  is holomorphic at s = 0. Thus 

c,(0)'=b.(0,t)-2#0, 

and so M*(0) must be an isomorphism. 

We must  still check our assertions in the case m = 2n + 2, 2n and X = 1. This 

will be done in section 6 below. | 

Remark: By (i) of Proposition 2.2, we see that  a basis for the intertwining 

operators from I,(so,X) to I, ,(-so,X) is given by the composition of M*(so) 

with the projections onto the two summands of R,,(VI,o) (9 R,,(V2,o). Moreover, 

it follows from that  same Proposition that  

dim I ' I oma( I .  (so, X), R .  (V/,o)) = 1 

for i = 1, and 2. | 

Next we determine the kernel of M,](so). 

PROPOSITION 5.6: With the same hypotheses as in Propositions 5.3 and 5.5 with 

n +  1 < m < 2 n + 2 ,  or for m = 2 n + 2  with X = 1 

ker(M*(so)) = R,(V~) N R,(V2). 

I f  m = 2n + 2, and X # 1, then ker(M.*(p.)) = O. Finally, if  m = n + 1 then 

ker(M,~(0)) = 0. 

Proof: We will prove this by induction on n using Proposition 4.2. We note 

first, however, that  for n odd, M*(0) is an isomorphism since, by the previous 

result its image is R,(V~) @ R,(Vz) = In(O,x). The ease m = 2n + 2 and X # 1 
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follows from the irreducibility of I,,(:l:p,,, X), while the case m = 2n + 2 with 

X = 1 will be taken care of in section 6 below. 

We must then consider the case n + 1 < m < 2n + 2, and we let Y,,(so) = 

ker(M,~(s0)). For convenience we will temporarily drop X from the notation. 

Applying the N1 Jacquet functor to the sequence 

o - - ~  Y.(~o) , ~.(~o) ~ ,  R.(V, ,o)  • R.(v~,o)  , o, 

where A is the map induced by Mn*(s0), and using Proposition 4.2, we obtain: 

1 1 
o , Y~(~o)N, ,I._~(~o - ~) ~ I.-~(~o + ~) 

Xt~_~, (Rn_i(V:,o) ~ Rn_l(V~,o) ) ~ (Rn-I(VI,o) ~ Rn-,(V2,o)) ~ O. 

Here 

and 

1 V,' ~ : ~,,-~(so - ~) ---" R , , - I (  ~,o) ~ R"-I(V~,o)  ~ 0 

1 Ru-I (VI ,o)  • Rn-I(V2,o) 0. A2 : I,.-l(so + ~) , 

By the remark following Proposition 5.5, we see that A1 must have the same 

• * S kernel as M~_,(~o - ½) and ~ must have the same kernel as M.*_I( o + ½). By 

induction, we have 

ker(A1) = R, , - I (V; )  t3 R, , - I(V~) 

and 

ker()~2) = Rn-l(Yl) CI Rn_l(Y2). 

Thus 

Y.(S0)N, ~ (R._ , (V:)  n R.-I(V~))  e (R._ , (V, )  n R._,(V2)) 

On the other hand, we have 

(R.(v1) n R.(V~))N ' C (R.(V,))N,  n (R.(V2))N,,  

and, by (ii) and (iii) of Proposition 4.2, 

(Rn(V,))N, n (R.(V~))N, ~-- (Rn-1(V:) n R.-I(Vg)) ~ (R._,(Vl) n n._,(v~)). 
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Finally, we note that,  by Proposition 5.3, 

Rn(V,)/(Rn(V,) n Rn(V2)) -~ Xn(so,x)lRn(V~). 

Applying the Nl Jacquet functor to this it is easy to see that,  in fact, 

(n.(v,) n nn(V2))N, = (Rn(V,)),,, n (nn(V~))N,, 

and this proves that  

(R,(V~) CI R,(V2))N ' = Y,(sO)N,. 

Thus 

Rn(V, ) n an(V2) = Vn(s0) 

by the non-triviality of the Jacquet functor on constituents. 
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6. E x p o n e n t s  a n d  c o m p o s i t i o n  ser ies  

In order to complete our description of the composition series of the representa- 

tion In(s, X) at points of reducibility, we will now make a more detailed study of 

the exponents and their multiplicities. 

m n+l the exponents of In(so,X) Recall that ,  by Proposition 4.5, for so = 5- - 2 

are obtained as shuffles of sequences 

( l _ m  m m m m y , 2 -  ~ , . . . , ~ -  ~; ~ - , , . . . ,  ~ -  r -  1) 

where 0 < r < n. For convenience we will denote this exponent by E~ = E~(m) 
and will let 

and 

A~ = (1 - m m 2 )  _ - -  . . .  -~-,2 2 ' , r  - , 

Br=( -~  m 
- n , . . . ,  2 r - l )  

denote the first and second blocks in Er. Thus Er  = (At; Br). We will omit  the 

m unless more than one value is being considered. Recall also that  a shuffle of 

E ,  is any permutat ion in which the ordering of elements of Ar is preserved and 

the ordering of elements of Br  is preserved. 

Now if V with d imV = m is a quadratic space for which Rn(V) C In(so,X), 
the exponents of Rn(V) are obtained as shuffles of E~'s for r ' s  which do not 

exceed the Wit t  index (dimension of a maximal isotropic subspace) of V. 
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T h e  m a i n  case of in teres t  to us will be X ~ 1 and  n + 1 < m < 2n. In  th is  case, 

there  will be  two spaces  V! and  V2 of d imension  m,  of oppos i t e  Hasse  invar iants ,  

and  b o t h  of  W i t t  index ~ - 1. Let Yi,0 be  the  c omple me n ta ry  space to  ~ as 

in sect ion 5 above,  and  recall  t ha t  d im V/ = m ~ is de t e rmined  by  the  condi t ion  

m + m '  = 2n + 2. We have shown tha t  

In( 0, x) = Rn(V,) + Rn(V ) 

and  t ha t  Rn(V1,o) ~ Rn(V2,0) is a submodu le  of In(-So, X)" Moreover ,  since 

X # 1, we have seen tha t  there  is an ou te r  a u t o m o r p h i s m  of G which preserves  

the  r ep re sen t a t i on  In(so, X) (resp.  In(-So, X) ) and  in terchanges  the  submodu le s  

R,~(V1) a n d  R,,(V2) (resp.  R,(V~,0) and  R,(V2,0)).  Since this  ou te r  a u t o m o r -  

p h i s m  preserves  the  Boret  subgroup,  our  fixed m a x i m a l  spl i t  torus ,  etc. ,  i t  pre-  

serves exponents .  Thus  the  submodules  Rn(VI) and  Rn(V2) (resp.  R,(V~,o) and 

Rn(V2,o)) have the santo set of exponents .  

LEMMA 6.1:  The set of exponents of In(so, X) which occur  as  sfiuf//es o f  E~(m)'s 

,n is identical to the set of exponents of  Rn(Vi,0). with r > T 

Proof: T h e  exponents  of R.(V1,0) are  shuffles of 

m ~ rn'  m ~ m '  
- -  . . .  r e  r n '  n , . . .  - -  - -  r '  - -  1 )  Er,(m') (1 

- - 2  ' 2 -  2 ' ' 2 ' 2 ' 2 

m t 

for 0 < r '  _< -5- - 1. But  now observe tha t  

T}"/, '  m T ' / l  t m 
1 - n mid - -  - n = 1 -- - -  

2 2 2 2" 

m < r < n ,  w e h a v e  Also,  se t t ing  r = n - r ' ,  so tha t  ~- 

m ~ m rn rn ~ 
r '  - - -  - r -  1 and  - -  - r -  1 = r '  - - -  

2 2 2 2 

Thus  Ar,(m') = Br(m) and Br,(m') = A~(m), and  the  set of shuffles of  E~,(m') 

coincides wi th  the set of shuffles of E r ( m ) .  This  gives the  requ i red  ident i f ica t ion  

of  exponen t s .  | 

Note  t ha t  the  set of exponen t s  here  are  the  ones whose full mul t ip l i c i ty  does 

not  occur  in  R,,(F~). Also no te  tha t  s ince In(so,X) = Rn(V1) + Rn(V2), the  

exponen t s  which occur  ou t s ide  of Rn(V1) must  occur  in Rn(V2), and  hence, since 

Rn (VI) a n d  R ,  (V2) have the  same  exponents ,  mus t  be  r e p e a t e d  inside of Rn (V1). 
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Our  goal now is to investigate the multiplicities of the exponents.  To do this 

it is useful to formulate  the combinatorial  problem involved more  abstractly.  

Suppose that  m and n are given positive integers with m even and with n + 1 < 

m < 2n. Let R be the set of sequences (counted with multiplicities) which arise 

as shuffles of sequences E r  defined as above, with 0 < r <Tm _ 1. Similarly, let 

S be the set of  sequences (counted with multiplicities) which arise as shuffles of  

sequences E ,  for ~ < s < n. Finally, let I = R U S ,  again count ing multiplicities. 

PaOPOSITION 6.2: 

(i) S C R, i.e., the shuffles of  E ,  a/1 occur  as shuffles of Er 

(ii) I - 2S = R - S is of  multiplicity 1. Moreover, 

( I  - 2S) n s = (R - S) n s = ~. 

Thus the shuffles which remain after the overlap of R and S is removed are 

all distinct and do not occur  in the set S. 

Proof: First observe: 

LEMMA 6.3: A shuffle of Er and a shuffle orE ,  can coincide only i f  either r = s 

o r r + s = m - 1 .  

Proof: Since each block in Er  is strictly increasing, the largest component  of E r  

is max( r  ,,, m r - 1). If  a shuffle of E~ coincides with a shuffle of E , ,  then ¥ , ~  

we must  have, in particular,  

m m m rn 
max( r  2 '  2 r -  1) = max(s  2 '  2 s - 1), 

and hence e i t h e r r = s o r r + s = m - 1 .  | 

Thus  we may  as well fix r and s with r + s = m - 1 and 

m m 
0 < r  < ~ - - 1  < -~ -  < s  < n .  

Let 

and 

~ = ( I  - r a  2 m m 
2 '  2 " " '  2 

- - n ~ . . . , r - -  

~'~ m ( ~ -  - -  ) = - n , . . . ,  2 s - - 1  

- - - n - l ) ,  
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m m 
"y = ( r + l - -~ , . . . , -~ - r - 1 ) .  

Here each sequence increases by 1 in each step. Then, because of the conditions 

we have imposed on r, s, m and n, we may write 

= &,'r)  

and 

Es = 

Here in the expression for Er (resp. Es) we write fll and f12 (resp. fl' and fl") 

to distinguish the two copies of ft. Now we claim that any shuffle of E,  can be 

obtained as a shuffle of Er, and that the procedure for obtaining this shuffle from 

that of Es will yield distinct results of distinct shuffles of Es ( here we keep track 

of the actual shuffle and not just of the sequence which it creates). 

For an arbitrary shuffle of E~, let L(fl")  be the initial segment of fl" consisting 

of elements which are moved to the left of some element of o~, and let R(fl") be 

the terminal segment of fl" consisting of elements which are moved to the right 

of some element of 7- Then write 

fl" = (L(fl") ,  M(f l" ) ,  R(fl")) ,  

where M(/3") is what remains. Note that M(/~") might be empty. The given 

shuffle of Es can be written as 

( Sh(  a; L(f l")  ), S h(fl'; M (fl") ), S h( 7; R(f l")  ) ), 

where the Sh(x;  y)'s denote shuffles of the sequences x and y. The first and 

last shuffles here may be realized in a unique way as part of a shuffle of Er as 

Sh(a;  L(fl2)) and Sh(7; R(fl l ))  respectively. Thus we must prove that the middle 

shuffle 

Sh(  L(fl'), M(f l ' ) ,  R(fl'); M(/3")) 

is uniquely realizable as a shuffle 

S h( L(fl ,  ), M (fl, ); M(fl2), R(fl2 ) ), 

of the remaining parts of fll and f12. Note that this is precisely of the same form 

as our original problem. Thus we will be done by induction on n provided the 
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length has been reduced by the first step. The length is not reduced if and only 

if both a and/3  are empty, so that our original series were Er  = (/51;fl2) and 

E~ = (fl~;/3"). But the shuffles of these two are in obvious bijection. Note that  if 

n = 1 in the original problem, then/3 and one of a and 7 is empty, so that there 

is nothing to prove. 

To prove the remaining assertions of the Proposition, we will show that,  given 

a sequence which arises from a shuffle of Er  either we can uniquely recover the 

shuffle from the given sequence, and hence the sequence will have multiplicity one 

as an exponent, or the sequence arises as a shuffle of E, .  Moreover, in the second 

case, we will show that every shuffle of Er  which yields the given sequence is one 

of the shuffles which is matched to a shuffle of E ,  by the algorithm above. Note 

that the second case occurs, i.e., the given sequence may be obtained by a shuffle 

of Es, if and only if it contains the subsequence (a,/3, 7) and the complement of 

this subsequence is/3. These assertions will again be proved by induction on n. 

Consider a sequence X which arises by an arbitrary shuffle of Er. Let L(X) 
be the set of entries of X from/3 which occur in X to the left of some element 

of a and let R(X) be the set of entries of X from/3 which occur to the right of 

some element of 7. Let L(/3) and R(/3) denote the corresponding subsets of/3. 

Note that L(/3) (resp. R(/3)) it an initial (resp. final) subsequence of/3, so that 

we may write 

/3 = L(/3)/3 L =/3RR(/3) 

for certain subsequences/3L and/3R. Note that elements of L(X) must have come 

from/32 while elements of R(X) must have come from/31. 

Now if some element of 7 occurs to the left of some element of o~, then L(/3) = 

/3 = R(/3). In this case there is a unique shuffle which yields X and X cannot 

arise from a shuffle of E~. 

Similarly, if L(/3) t3 R(/3) = /3, then the source of all remaining entries of X 

which come from/3 is determined uniquely. Thus, again, there is a unique shuffle 

which gives rise to X. 

We may then suppose that all elements of a in X lie to the left of all elements 

of 7, and that  

/3 = (L(/3), M(/3),  R(/3)), 

for some non-empty sequence M(/3). The sequence X then has the form 

(Sh(a; L(/32)), Sh(L(~I ), M(/31 ); M(/32), R(/32)), Sh(7; R(/31 ))), 
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in the notation introduced above. 

Reversing the procedure used before, we can realize the first and last of these 

shuffles in a unique way as part of a shuffle of E. ,  i.e., as Sh(a; L(fl")) and 

Sh(7; R(fi")). It then remains to prove that the remaining sequence 

Sh(L(fl, ), M(fll ); M(/~2 ), R(fl2)), 

either has a unique expression as a shuffle of 

(L(/~I), M(fl, ); M(fl2), R(fl2)), 

or that every shuffle which yields this sequence is matched to a unique shuffle of 

(L(~'),  M(~') ,  R(~'); M(fl")). 

Once again, this problem has the same form as our original one so that  we are 

done, by induction on n, provided that we have indeed shortened the sequence 

X by the steps above. 

To complete the proof, we must observe what happens when n is not reduced 

in the first step, i.e., when a and 7 are empty. In this case, Er  = (flt;fl~) and 

Es = (fl; fl), so that the two sets of shuffles coincide, and we are done. | 

Proposition 6.2 has several useful consequences. 

First let us assume that we are in the case X # 1, X 2 = 1 with So = ~ - Pn for 

n + 1 < m < 2n. Let V1,172, Vl,0 and V2,0 be as above, and let R be the set of 

exponents of In(so,X) which arise from shuffles of Er(m) ' s  with 0 < r < m _ 1. T 
Let S be the set of exponents which arise from shuffles of Er(m)'s with ~ < r < 

n. Elements of both of these sets are counted with multiplicity. Finally, let D 

denote the set of exponents R - S, which is well defined by (i) of Proposition 6.2 

and which is multiplicity free by (ii) of that Proposition. 

PROPOSITION 6.4: 

(i) R is the set of exponents of R,(l~), /'or i = 1, 2. 

(ii) S is the set of exponents of Rn(V~,0), for i = 1, 2. 

(iii) D is the set of exponents of R,(V~)NR,,(V2) and of ln(-So, X)/(Rn(VI,o)~ 

Proof." Parts (i) and (ii) are just restatements of earlier results. To prove (iii) 

note that,  since kerM*(s0) = R,(V1) VI Rn(V2), by Proposition 5.6, we have 

Rn(VI)/(R,(V1) N R,(V2)) - ~  Rn(V1,0). 
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Our claim now follows from (i), (ii), Proposition 6.2 and the exactness of the 

Jacquet functor. II 

PROPOSITION 6.5: For m, so, etc., as above, 

ker(M*(-s0)) = Rn(VI,o) ~ Rn(V2,0), 

and 

Im(M*(-s0)) = Rn(V1) n R,,(V2 ). 

Proof." Let U be the unipotent radical of our fixed Borel subgroup B. The 

U-Jacquet module In(so, X)u, which is a complex vector space of dimension 2 n, 

may then be decomposed according to the exponents, which give the action of 

the maximal split torus A. We then obtain a decomposition 

I.(so, x)v = X • Y, 

stable under the action of A, where X is the subspace with exponents in S and Y 

is the subspace with exponents in D. Note that the simplicity of the exponents 

in D implies that there is a basis for Y, unique up to scalars, consisting of 

eigenvectors for the action of A.  Since the exponents of I,~(s, X) are holomorphic 

functions of s, there is an open neighborhood of so on which the exponents 

interpolating those in D remain simple and disjoint from those interpolating 

exponents in S = R -  D. 

decomposition 

Note that 

Thus, for s in this neighborhood, we still have a 

In(s, X)u = X(s) ~ Y(s). 

r = Y(so) = (Rn(V1) f3 Rn(Vz))u. 

Similarly, we have a decomposition 

In(--So, X)V = X(-so  ) ~ Y(-so  ) 

and an extension of  this 

Zn(--S, X)V = X(--*) * Y ( - s )  

to a neighborhood of -so. Now the normalized intertwining operators induce 

operators M*(s, X)v and M,~(-s, X)u on the U-Jacquet functors. If A = A(s) 
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is an exponent in D(s) (the space of exponents extending those in D), and if 

v(s) E Y(s) (resp. v(-s)  E Y( - s ) )  is a corresponding eigenvector, chosen to 

depend holomorphically on s, we must have 

and 

M~(s. X)uV(S) = , ( , ) v ( - , )  

m . ' ( - , ,  x ) u o ( - s )  = ~(,)v(s)  

for some holomorphie functions /~(s) and v(s). Note that #(s) has a zero at 

s = so since Rn(V,) N R.(V2) is the kernel of M*(so,X). On the other hand, the 

fact that 

M*(-s ,X)  o M*(s,X) = 71,,(s,X) . Id, 

implies that 
,,(*)- ~,(,) = ,7(,) 

has a simple zero at s = so and hence that 

~(~o) # 0. 

Thus M*(-So, X)u is non-zero on Y(-so).  Since we already know that R,,(VI.o)(3 
Rn(V2,0) lies in the kernel of M~(-So, X), we must have 

X (-so ) = ( nn(Vl,o ) (3 n,(V2,o ) )v = ker(U, : ( -s0 ,  X)u ), 

and hence that 

Rn(V1,0) (3 Rn(V2,o) = ker(M*(-s0 ,  X)) 

by the exactness of the U-Jacquet functor. 

It follows immediately that 

Im(M*(- so ,  X)v ) = ( R,,(Vl ) N Rn(V2 ) )u 

and hence that 

R,,(V~) n R,,(V~) = Im(M~(-~o,  X)), 

as claimed. I 

Finally we can finish our determination of the composition series of In(s0, X). 
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PROPOSITION 6.6: For X ~ 1 and for n + 1 < ra _< 2n, 

n an(y ) 

is irreducible. 

Proof: Suppose that  W C Rn(V~ )O Rn(V2) is a non-zero irreducible submodule. 

Then the argument of the proof of Theorem 2.6 implies that  there is a non-zero 

intertwining operator  

T: In(-so, X) , W C In(so, X). 

By (i) of Proposition 2.2, T must be a non-zero multiple of M,~(-so, X). But we 

have just seen that  the image of M*(-so,  X) is Rn(V~) n Rn(V2). I 

We next turn to the case X = 1 and assume that  n + 1 < m < 2n. As before, 

let V1 be the split form and let V2 be the quaternionic form of dimension m. Also 

let Vl,o and V2,o be the complementary forms of dimension m '  = 2n + 2 - m. 

Let R and S be the set of exponents defined above (note that  the exponents of 

In(s, X) do not depend on X), and let R0 be the subset of R consisting of those 

exponents which arise as shuffles of Er ' s  with 0 < r < ~ - 2. Also let So C S 

be the subset consisting of those exponents which arise as shuffles of Er ' s  with 

r > ~ .  By Lemma 6.3, note that  exponents in So can only match exponents in 

R0. Applying Proposition 6.2 and the argument of the proof of Lemma 6.1, we 

have 

PROPOSITION 6.7: 

(i) RU( S -  So) is the set of exponents of R,,(V, ) and Ro is the set of exponents 

of R.(V  ). 
(ii) SU(R-Ro)  is the set of exponents of Rn(Vl.o) and So is the set of exponents 

of Rn(v ,0). 

(iii) Ro D So and Ro - So is simple and disjoint from So. 

(iv) R -  Ro D S - So and (R - Ro) - ( S -  So) is simple and disjoint from S -  So. 

(v) R0 - So is the set of exponents ofRn(Vl) n Rn(V ). 

By the same arguments as before Proposition 6.7 yields: 

PROPOSITION 6.8: For X = 1 and for n + 1 < m < 2n, 

ke r (M*( - s0 ) )  = Rn(VI,o)@ Rn(V~,0), 
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and 

= R . ( V , )  n 

PROPOSITION 6.9: For X = 1 and for n + 1 < m < 2n, 

R,,(V~ ) N R,(V~) 

is irreducible. 

Finally, we consider the cases X = 1 and m = 2n of 2n + 2. 

First suppose that  m = 2n. Then, since the E~(m) 's  have the form 

( 1 -  n , 2 -  n , . . . , r -  n ; 0 , . . . , n -  r -  1), 

distinct shuffles of a given Er  yield distinct exponents, and the only possible 

overlaps occur for r + r '  = 2n - 1, i.e., for r = n - 1 and r '  = n. In fact, the only 

non-simple exponent is 

(1 - n , 2 -  n , . . . , 0 ) ,  

which occurs with multiplicity 2. The shuffles of Er  for v = n and n - 1 are the 

exponents of R,(V~,0) while the exponents of R,,(V2) are all simple, and do not 

overlap with those of R,(VI,o). 

Next suppose that  m = 2n + 2. Then all of the exponents are simple, and the 

only exponent which does not occur in R,,(V2) is 

( - n ,  1 - n , . . . ,  - 1 )  = --PB. 

This is the unique exponent of the trivial subrepresentation R,(V1,0) = C of 

l , , ( - p , ,  1). 

With this information we can complete the proof of Propositions 5.5 and 5.6. 

End of the proof  of Proposition 5.5 and Proposition 5.6." Recall that  V1 is the 

split space and let V2 is the quaternionic space of dimension m = 2n or 2n + 2. 

Then there is no complementary space for Vs. By (ii) of the Proposition 4.4 of 

[10], we have 

dim Homc(R,(V2) ,  I , ( -So,  X)) = 0, 

while by (iii) of Proposition 3.4 above, we have R,(V,  ) = / , ( S o ,  1). Since 

b.(s, 1)-' b.(-s, 1)-' 
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has a simple zero at So, the K type argument of the first part of the proof of 

Proposition 5.5 again shows that R,~(V1,0) is contained in the image of M*(so). 

But now the faithfulness of the U-Jacquet functor on constituents and description 

of the exponents just given imply that Rn(Vl,o) must be precisely the image of 

and Rn(V ) must be precisely its kernel, m 

Finally, we have the analogue of Propositions 6.6 and 6.9. 

PROPOSITION 6.10: /.fro = 2n or 2n + 2 and X = 1 then the submodule Rn(V2) 

associated to the quaternionic form V2 of dimension rn is irreducible. 

The proof is the same. 

The following is a very special case of the Howe duality conjecture [6,21]. Note 

that we allow residue characteristic 2. 

COROLLARY 6.11: R , ( V )  has a unique irreducible quotient. 
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