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ABSTRACT
In this paper we give a complete description of the points of reducibility,
components and composition series of the degenerate principal series rep-
resentations of the group Sp(n, F), F a non-archimedean local field, which
are induced from a character of a maximal parabolic subgroup P = M N
with Levi subgroup M ~ GL(n, F). We show that all of the reducibility
is accounted for by submodules coming from the Weil representation as-
sociated to quadratic forms over F. The local results of this paper play
an essential role in our extension of the Siegel-Weil formula relating theta

integrals and special values of Eisenstein series.

Introduction
In this paper we will give a complete description of the points of reduction and
the constituents of a certain family of induced representations of the symplectic

group G = Sp,,(F) over a non-archimedean local field F of characteristic zero.

* Parially supported by NSF Grant DMS-9003109
** Partially supported by NSF Grant DMS-9003109
Received November 9, 1990 and in revised form December 2, 1991

209



210 S. S. KUDLA AND S. RALLIS Isr. J. Math.

More precisely, recall that G has a maximal parabolic subgroup of the form P =
MN with Levi factor M ~ GL.(F) and unipotent radical N ~ Sym,,(F). For

any unitary character x of F* and for any s € C, we consider the representation
G
I(s,x) =Indpx - | |°

induced from the character m +» x(det m)| det m|*, where the induction is nor-
malized so that I(s, x) is naturally unitarizable when s is pure imaginary. Such
representations play a central role in our work on the Weil-Siegel formula [9,
10,12,13] and hence, ultimately, in the study of the special values of certain
Langlands L-functions [2,5]. In the real case, fairly complete information about
the points of reducibility and about certain constituents of the I(s, x)’s was ob-
tained in [11], although the precise composition series was not determined. In
the non-archimedean case, the points of reducibility and a complete description
of the constituents and composition series was given by Gustafson [3] provided
the character x is unramified. Unfortunately, in glebal applications ramified
characters will arise, and the method of [3] cannot be applied.

In this paper we determine all of the points of reducibility for an arbitrary

character x. More precisely, we have

THECREM: Assume that x is uorinalized as explained in section 1.
(i) If x* #1, then I,(s, x) is irreducible for all s.
(i) If x2 =1 but x # 1, then I,(s, x) is irreducible whencver s does not lie in

the set
n+1 s n li"Z when n is odd
+(— k Zil<k<i|=[}U o8¢
£ 2 )+108‘] [1<ks [2]} {(ﬁ when n is even.

(ii1) If x =1, then I, (s, x) is irreducible whenever s does not lie in the set

n+1 % n n+1 27
- B+ L 7Z|1<k< _] Z
(g T+ ll_k_[2 ol )
U{%Z when n is odd
¢ when n is even.

Next we describe constituents of the I,(s, x)’s which are attached to quadratic
forms and which account for all of the reducibility at points allowed in the pre-
vious result. If V, (, ) is a non-degenerate inner product space of dimension m

over F, and if m is even, then there is a subrepresentation R,(V) C In(so,xv)
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associated to V, where sp = 2 — 2 and xv(z) = (z,(—1)™/? det(V))F. Here
(', )F is the Hilbert symbol for the field F' and det(V') = det((v;, v;)) for any ba-
sis {v;} of V over F. The representation R,(V') (which need not be irreducible)
may be viewed as the image of the trivial representation of O(V'), the orthogonal
group of V, under the local theta correspondence. For convenience we state the

result in the cases x # 1 and y = 1 separately.

THEOREM: Assume that x* = 1 but that ¥ # 1. Let sq = - "—g’—l, with
2 < m < 2n and m even. Let Vi and V, be the two inequivalent quadratic
spaces over F' with dim V; = m, v, = x. They are distinguished by their Hasse
invariants.

(1) If2 <m < n+1 sothat sg <0, then R,(Vi) and R,.(V3) are irreducible,
R,(Vi) ® Rn(V2) is a submodule of In(so, x) and the quotient

In(s0,X)/(Bn(V1) @ Rn(V2))

is irreducible.
(ii) If m = n+1 (hence n is odd), so that sy =0, then R, (V}) and R,(V2) are
irreducible and
In(s0,x) = Ra(V1) ® Ra(V2).

(iii) If n+1 < m < 2n, then R, (V1) and R,(V;) are maximal submodules of
I.(s0,x) and R,.(Vy) N R,(V3) is irreducible.

THEOREM: Assume that x =1, and let so = 3 — &g—}—, with 0 < m < 2n+42
and m even. Let V) be the split quadratic space of dimension m. Also, if
4 <m < 2n+2, let V3 be the quaternionic quadratic space of dimension m (see
section 3 for the terminology).
(i) I m = 0 or 2, then R.(V}) is irreducible and is the maximal submodule of
I,(s0,1). In the case m = 0, R,(V}) is the space of constant functions.
(i1) If4 £ m < n+1 so that sg <0, then R,(V1) and Rn(V2) are irreducible,
R,(V1) @ Rn(V2) is a submodule of I,(so,1) and the quotient

In(s0,1)/(Ra(V1) ® Ra(12))

is irreducible.
(i) Ifm = n+1 (hence n is odd), so that sy = 0, then R,(Vi) and R,(V2) are

irreducible and

In(SQ, 1) = Rn(Vl) (4] Rn(V2)
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(iv) Fn+1<m < 2n -2, then R,(V;) and R,(V;) are maximal submodules
of In(s9,1) and Rn(Vi) N Rp(V2) is irreducible.

(v) If m = 2n or 2n + 2, then Ro(V1) = In(s0,1), Ra(V2) is a maximal sub-
module of I,(sg,1) and R,(V2) is irreducible.

In fact, the various subquotients may all be identified. For example, when
m = 2n+2 and x = 1, then the quotient I,(®£L,1)/Rn(V2) = Ra(V1)/Ra(V2) is
isomorphic to the trivial representation on the constant functions in I,(— 23, 1).
Similarly, for m = 2n, the quotient In(so,1)/Rn(V2) = Rn(V1)/Rn(V2) is isomor-
phic to the irreducible submodule R,(V},0) of I.(—50,1) associated to the split
binary form V] o. In general when x =landn+1<m <2n-2,let V; and 1}
be as in the previous theorem, and let V; ¢ and V; ¢ be the split and quaternionic

quadratic spaces of dimension 2n + 2 — m respectively. Then
Ra(V1)/(Ra(V1) N Ra(V2)) = Ra(V1p0)

and

Ra(V2)/(Ra(V1) N Rn(V2)) 2 Ra(V2,0)-

Analogous results hold when x # 1.

We also describe the image and kernel of the normalized intertwining operator
M;(3,%) : Tn(s,x) — In(=s,x7")

in all cases (sections 5 and 6), and we determine all of the exponents, with
respect to the Borel subgroup of Sp,(F), of the representations I,(s, x), Rn(V)
and their various constituents (sections 4 and 6). For example, the representation
R.(V1) N R, (V2), which occurs as an irreducible submodule to the right of the
unitary axis, turns out to have multiplicity free exponents. This rather striking
fact depends on a somewhat tricky combinatorial fact about shuffles (Proposition
6.2).

Finally, it follows from our results that the representation R,(V) always has a
unique irreducible quotient. This is the Howe duality conjecture [6], [21] in our
rather special situation, but without any restriction on the residue characteristic.

The results of this paper are a necessary technical background for our forth-
coming work on a general Weil-Siegel formula in the divergent range. They may

also be seen as a kind of analogue of this formula over a local field.
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1. Preliminaries

In this section we will set up the basic machinery which will be used throughout
the paper. Our notation will be mostly that of [9,10,13].

Let F be a non-archimedean local field, which, for convenience, we assume to
have characteristic 0. Let O be the ring of integers of F, and let P = @O be
its maximal ideal with a fixed generator w. Let ¢ = |O/P| = |@|~!. We fix an
additive character v of F' whose conductor is O.

Let G = G, = Sp,(F) be the symplectic group of rank n over F. Here
and elsewhere we will often drop the subscript n unless it is required for some

inductive argument. Let P C G be the maximal parabolic subgroup with Levi

decomposition
P=MN
where
M={m(@)= (1) la€ CLUP)
and

N = {n(b) = (1 i’) |b= '€ Sym,(F)}.

Here Sym,,(F) is the space of n x n symmetric matrices. We will sometimes refer
to P as the Siegel parabolic. Let B C P be the Borel subgroup with unipotent
radical

(1.1) U = { m(u)n(d) | « upper triangular unipotent and b € Sym,(F) }
and Levi factor
(1.2) A = { m(a) | a = diag(ai,...,an) }.

We fix the maximal compact subgroup K = Sp,(O) of G, and for the Iwa-
sawa decomposition G = PK = NMK we write g = nm(a)k for a = a(g) €
GL,(F). While a(g) is not uniquely determined by this decomposition, the
quantity |a(g)| = | det a(g)] is well defined.
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Let x be a character of F*. For s € C, we let I(s,x) = I,(s,x) denote the
normalized smooth induced representation, consisting of smooth functions ®(s)

on G such that

(1.3) ®(nm(a)g, s) = x(a)la|""*"B(g, s).

Here p, = pp = L. A section ®(s) € I(s,x) will be called standard if its
restriction to K is independent of s. Note that this restriction determines ®(s).

As in [10,84.], recall that we have an intertwining operator
(1.4) M(s,x) : I(s,x) = I(=s,x7")

defined, for Re(s) > pp, by the integral
(15) M(s,)8(0) = [ @(ung,s)dn
N

1 . . . .
where w = 1 " ] € G. This operator has a meromorphic analytic contin-
“in
uation to the whole s plane.
Occasionally in this paper we will normalize the character x as follows. The

choice of prime element @ yields an iscmorphism
F*~0*xZ

and a corresponding isomorphism of character groups
X~ 0% x C!

where C! is the subgroup of C* of elements of absolute value 1. We assume that
under this isomorphism, x corresponds to an element of O* x 1, so that y is
trivial on @. Note that, in particular, x is either trivial or ramified. Of course,
an arbitrary quasicharacter of F* has the form a — x(a)|a|® for s in C, so our
normalization of y does not restrict the generality of our results. The purpose
of this normalization is to prevent an arbitrary translation, in the position of the

poles, which could arising from a twist of x by some power of | |.
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2. A criterion for irreducibility

In this section we will compute certain Jacquet modules of I,(s,x) and show
that this representation is irreducible for s and y outside of a certain set.
First we have [18]

LEMMA 2.1: Let N be the unipotent radical of P. Then, the Jacquet module
I.(s,x)n has an M stable filtration

Lis,\)N=I"'>I'>---D>I">I""' =0
with successive quotients

TIIT GL, (F
Z,(s,x) = I"/I™*" = Indg 1 P(e,),

where ), C GL(n) is the maximal parabolic subgroup of the form

{ (g Z) la€GL(n—r), be GL(r) },

and &, is the character of (), whose value on an element of the above form is

e —et e

x(det a)x(det b) ™| det a|** | det b

Here nonnalized induction is used.
Using this we obtain
PROPOSITION 2.2: Assume that x is normalized as explained in §1.
()
dim Homg (Za(s, x), In(—$,x71))
<{2 ifx*=1andsef+ "7 for somer with0<r <n

log(q)
1 otherwise.

2 ifx?=1ands€ =7
(11) dimHomG(In(svX),In(s,x)) _<_{ iy and s Tog(q)

1 otherwise.
Of course, in the second case here the dimension is equal to 1.

Proof: We simply note that

Homa(In(s,x), In(—s,x ™)) = Homar, (In(s, X, x| |77,
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and so, by Lemma 2.1,

n
dim Homg(Ia(s, x), In(=5,x™")) £ ) _ dim Homat, (Zr(s, x),x '] [7*¥**).

r=0

Next

Homgr, (Zr(s,x),x '] |7***") = Homg, (x| |°*", Z+(s, X))

~ Homgt, _, xcr, (x| ", & - 5:;/,2),
where ~denotes the contragredient representation. But
£ 1/2 — -1 —8—pn+r 8—pn
&r-6g. (a,b) = x(det a)™" | det a x(det b)| det b|*~#,

and so this last Hom is non-zero only in case either r = n or 0 < r < n and
x%(det a)|det a|>*~" = 1. Note that our normalization of x implies that either
x% =1 or x? is non-trivial on some unit, so that no solution of the last condition
exists in that case. This proves (i).

Part (ii) is proved in the same way. 1

We use Proposition 2.2 to determine the number of possible irreducible sub-
modules of I(s, x)-

PROPOSITION 2.3: Assume that x is normalized as explained in §1. Suppose
that # C I,(s,x) is a G-submodule.

(i) Fx*=1 and
n—r+ g

s€- 2 rloqu

for some r with 1 < r < n, then
dim Homg(m, In(s, x)) < 2.

(ii) Otherwise
dim Homg(7, I,(s,x)) = 1.

Proof: Given r,
HomG(ﬂ'v In(s’ X)) = HomGL" (WN,Xl |"+Pu).

Now we consider the generalized eigenspaces of 7 and of I,(s, x)n with respect

to the action of the center of GL,, where the eigencharacter of interest to us is
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g = (x| |**°)". First note that the central characters of the successive quotients
Z,-(S, X) of I.(s, X)N are

21 X(Z)n—Zr|zl(n—2r)a+r(r-—n)+l("—2tﬂ.

and one of these coincides with 4 if and only if

2w
2r __ - — —_—
xT=1 and r(2s+n—r)e 1oqu'

Clearly r = 0 yields one solution, while, if 0 < r < n, the condition on s is

n—r + i
2 rlogg

sE—

For a given s this can hold for at most one r. Recalling that the filtration on

I.(s,x)n is decreasing, we obtain an exact sequence of generalized eigenspaces:
0 — Z,(s,x)(#) — In(s,x)N(s) — C, — 0,
and thus a sequence
0 — Zi(s, x)(1) NN (p) — wn(p) — Cy.
This give us a bound
dim Homgt, (7, ) €1+ dim Homgt, (Z,(s, x), )

The second term only occurs if, for our fixed s, there is an r which satisfies the

above conditions. But, restricting to GL,(O), we have

dim Homgy,, (r)(Z+(s, x), #) < dim Homg,, (0)(Z-(s, x), #)
= dim Homgy,, (0y(#, Z-(5, X)),

since GL,(O) is compact and Z,(s, x) is admissible.

By Frobenius reciprocity, this space is non-zero only when
¢r(a,b) = x(det a)x(det b)~" = x(det a)x(det b)

for a € GL-(O) and b € GL,_,(0O), i.e., when x? = 1. Note that we are using
the fact that y is normalized here. 1
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COROLLARY 2.4: If the condition of part (i) of Proposition 2.3 holds, then
I.(s,x) has at most two irreducible submodules. Otherwise, I,(s,x) has at

most one irreducible submodule.

We will now use Proposition 2.2 to show that I,,(s, x) is irreducible outside of
a certain set of values of s and y. Several preliminaries will be needed.

First we recall the normalization of the intertwining operator, which is defined
asin [17]. Let

(3]
a"(s’ X) = L('S + Pn— N, X) H L(23 -n+ 2k, XZ))
k=1

and
(3]
bu(s,x) = L(5+ pr,Xx) H L(2s +n+ 1= 2k, x%),
k=1

where L(s,x) = 1 if x is ramified, and L(s,x) = (1 ~ x(w)¢™*)"! with @ a
uniformizing parameter for F' and ¢ the order of the residue class field, when x
is unramified. Let

. 1 -
M;(s,x) = mMn(s,x) s In(s,x) — In(—=s,x7"),

where M,(s,x) is the intertwining operator of (1.5) above. This normalized
intertwining operator is entire and, for any fixed so, M} (30, Xx) is not identically
zero [17].

Next, if 8 = '8 € M,(F), recall that the generalized Whittaker functional
Ws(s) is defined on I,(s, x), for sufficiently large Re(s), by the integral

Wa(s)(@)(g) = / B ()9, ) $(—4r(09)) o

ym,,
Karel [7] proved that if det 3 # 0, then Wjs(s) has an entire analytic continuation

and satisfies a functional equation
Wﬂ("’s) o Mn(5> X) = ’Yn(S, X)Wﬂ(s)'

The function v, (s, x) was computed by Piatetski-Shapiro and Rallis [16 , Propo-
sition 2.2], [17]

an(s’X) L(_S + %aXﬂX_l)
ba(=8,x71)  L(s+ 5,x8X)

7n(3aX) = eﬂ(S,Xaﬂ)v
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where xg is the quadratic character associated to the quadratic form 8 and
€n($, X, 8) has the form BqB'"** for constants B and B'.
Combining these results, we conclude that

Ws(s) o My(—s, x_l)oM;(s, x)

- an(—sl,x‘l) an(i,x)'y"(_s’x—l')%(s’X)Wﬂ(S)
= e e e (s W),

For convenience, we set

nn(s’ X) - bn(_s, X_ll )bn(sa X) en(s’ X, ﬂ)en(—s, X_l ’ IB).

LEMMA 2.5: Assume that x is normalized.
(i) If x® # 1, then b,(s, x) = 1.
(ii) If x2 =1 but x # 1, then the poles of b,(s, x) are simple and occur at the

points
n+1
2 1 0g g

s3]

(i) If x = 1, then the poles of b, (s, x) are simple and occur at the points

se—"+ ke g 15k5[ﬁ],
log ¢ 2
and the points
c n+1+ 27t
S —
2 log q

Note that this lemma determines all the zeroes of the constant of proportion-

ality ,(s, x).
Finally, we will need a beautiful result of Waldspurger concerning contragre-

dients of irreducible representations of G = Sp,(F’). Let

1, 0
6= ( 0 "ln) € Gspn(F)a
and for any representation 7 of G let

m®(g) = n(67"g6).
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Also recall that # denotes the contragredient of an admissible representation .
Then for any irreducible admissible representation = of G, [15, Chapter 4, IL.1,
Théoréme p.91]

7~ 7

Moreover, since conjugation by § preserves the parabolic subgroup P and fixes

the character of P which defines I,(s, x), we have an isomorphism
At In(s,x)° < In(s,X)
defined by
(A®)(g,s) = ®(67 g4, s).
Combining these facts with Proposition 2.2, we obtain

THEOREM 2.6: Assume that x is normalized as explained in section 1.
(i) If x% # 1, then I,(s, x) is irreducible for all s.
(ii) If x> =1 but x # 1, then I,(s, ) is irreducible whenever s does not lie in
the set

n+1 in n i
(-5 + R+ 2 1<k < [5]}u—z.

log g
(i) If x =1, then I,(s,x) is irreducible whenever s does not lie in the set

i n n+l 2m i
<k<L |= .
R+ Z]1s _[2]}U{:i: 5 Fioge? 1V g

{i(_n-gl

Remark: This result is almost sharp. In section 5 below we will prove that
1;;’ q
all remaining points we will exhibit proper submodules associated to quadratic

when 2 =1 and s € Z and n s even, then I,(s,x) is again irreducible. At

forms (section 3) and will determine the composition series (sections 4 and 5).

Proof: Suppose that W C I,(s,x) is an irreducible proper submodule and

consider the short exact sequence
0— W — I(s,x) — C —0,
and its contragredient

0—C — I(-s,x"") — W —0.
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Here we are using the fact that the contragredient of I,(s,x) is isomorphic to
I,(—s,x™1). Using the result of Waldspurger, we then obtain a non-zero inter-

twining operator
T:Li(=s,x7') — W W’ < L(s,x)® =~ L(s, x).

Note that kerT = C # 0. Since C is non-zero by our assumption that W is a
proper submodule, we may repeat this argument beginning with any non-zero

irreducible submodule
Z CC® CL(-s,x7") = In(—s,x7")
to obtain a non-zero intertwining operator
T : I(s,x) — Z~2°cC C IL(-s,x"").

Note that ker T' ~ €' # 0, where C' is the quotient I,(—s,x™")/Z.
The induced representation I,(s,x) contains a subspace S of functions, sup-

ported in the open cell Pw,N. This space is spanned by functions of the form
B(wan(8),5) = o(b)

for some ¢ € S(Sym,,(F)). For such a function ®(s) we have

WalsX®)e) = [ o(pb(-tr(68))db = $(9)
Sym,, (F)

In particular, this integral is independent of s, and for any given ¢ € S(Sym,, (F)),

there exists a # with det 8 # 0 for which Wjs(s)(®)(e) = 4(8) # 0.

LEMMA 2.7: Assume that

[bn(sa X)bﬂ(—sa X—l )]—1 # 05

and hence that n,(s,x) # 0. Also suppose that if Y2 = 1, then s is not in the set

%Z‘ Then M (s,x) and M}(—s,x™') are injective.

Proof: As above, we consider the operator M*(—s, x "} o M*(s, x) : In(s,x) —
I.(s,x). By (ii) of Proposition 2.2 and our assumption on s and y it follows that

any intertwining map from I,(s,x) to itself must be a scalar. Applying the
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functional Ws(s) to a suitable function in S, we conclude that this scalar must
be 7a(s, x). Thus M3(s,x) must be injective. Since our hypothesis is invariant
under s — —s, the same argument shows that M?(—s,x™!) is also injective.
Now suppose that that s is such that [ba(s,X)bn(—s,x~!)]™! # 0, and that,
in the case x? = 1, s does not lie in the set lo':qZ. Then either x? # 1 or
x* = 1 and ¢° # £1. Thus (i) of Proposition 2.2 implies that at least one
of the spaces Homg(In(s, X), In(—s,x7 ")) and Homg(In(—s,x7 1), In(s,X)) is

one dimensional. Therefore either T is proportional to M*(—s,x~') or T' is

proportional to M(s,x). This yields a contradiction, since neither T nor T is
injective when a proper irreducible submodule W exists. |

in
log ¢
but n even. This case is more delicate and will be handled in section 5 below.

We must still prove irreducibility in the cases s € 7Z in the cases y% =1

3. Submodules associated to quadratic forms

When the character y is quadratic and for certain values of s, the representations
I(s,x) have submodules associated to quadratic spaces. In this section we do not
require ¥ to be normalized.

First, following §1.2 of [13], we recall a few facts about quadratic forms. For

a non-degenerate inner product space V, { , ) over F' of even dimension m, let
A(V) = (-1)™? det(V) € ¥*JF*?

be the discriminant of V where det(V) = det((z:,z;)) for any basis x1,-++ ,2m
of V. Forz € F'*, let
XV(‘F) = (‘raA(V))F’

where (-,-)r is the Hilbert symbol for F. The element A(V) in F*/F*? is
determined by x, . The isometry class of V is then determined by m, x, , and
the Hasse invariant ¢(V'), defined by

G(V) = H(a’i, aj)F

if we take any basis {z;} for V such that (z;,z;) = &ija; [20]. Note then that
if x and m > 2 are fixed, there are precisely two isometry classes of forms of

dimension m with yy = ¥, corresponding to the two possible choices of e(V).
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When m = 2 there are two forms when x # 1 and only one (the split form) when
x=1

For a non-degenerate quadratic space V and for our fixed additive character ¢
of F, let (wy,S(V")) denote the Weil representation of G realized on S(V*"), the
space of Schwartz-Bruhat functions on V", in the usual Schrédinger model. The
action of G commutes with the natural action of O(V'), and we will sometimes
write wy (g, k) for the simultaneous operation of elements g € G and h € O(V).

Let R,(V) denote the image of the map

S(Vn) — In(so, xVv)
=D,

where
B(g) = wy(g)p(0)

and s = J - pn. This map induces an isomorphism [18],
fad s hY
A‘)(i’ )()('V') ~ Rn<V},

where S(V")o(v) is the space of O{(V }coinvariants.

A fact of fundamental importance for us is the following:

PROPOSITION 3.1. Mssuaie that o2 dun{V) € noso dhat sg < 0. Then R,(V)
is an nreducible and enitaiizable G = G, wiodule. In fact, the restriction of this

representation to P is also irreducible.

Before giving the proof of this Proposition we recall a construction of Li [14].

Tor ¢y and ¢y € S{V™"), consider the pairing defined by
r
(1,021 :j (p1,w(h)p2) dh
oV)
- / o1(2)2lh—T2) dx dh.
o) Jvn

Since we are assuming that dimV = m < n, the dual pair (G,0(V)) is in the
stable range with O(V) the small group. In this situation, Li proved that the
above integral is absolutely convergent for all ¢ and @3, and defines a positive
semi-definite, G-invariant Hermitian form on S(V"). Let R C S(V") be the

radical of this pairing. Then Li also proved [14 ,§5. | that the quotient

H(1) = S(V")/R
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is a non-zero irreducible unitarizable representation of G.

For fixed ¢1 € S(V"), the map ¢ — (p, 1) defines an O(V )-invariant linear
functional on S(V"), and thus factors through R,(V). In particular, there is a
natural map

R (V) — H(1) = S(V")/R.

PROPOSITION 3.2: When dimV =m < n, R.,(V) ~ H(1).

Proof: It will suffice to show that for any ¢ € R, the associated function ®(g) =
w(9)¢(0) in I,(se,xv) vanishes identically. In fact, since R is stable under the
action of G, it will suffice to prove that

#(0) = /V pla)de =0

whenever p € R.
Now if ¢ € R, then for any ¢; € S(V™), we have

(p,1) = /O(V) ./;- e(z)p1(h1z) dz dh

= / /O(V) @(hz) dh 1 (z) dz.

Let p be the moment mapping
u:V"® = Sym,(F), z - (z,z) = ((2i,2;)),
where z = (z),22,...,2n) € V™. Then we let

Ve = (V™)reg = {z € V" | z and p(z) have maximal rank }.

reg

Here the rank of z € V™ means the dimension of the subspace of V spanned by
the components of z, so that, for z € V3, this rank is equal to min(m,n) = m,
and is likewise equal to the rank of the n x n symmetric matrix (z,z). Let
Ov = p(Via,) C Sym,(F) be the image of V;z,. We then obtain a submersive
map V2, — Oy and, by Harish-Chandra’s result [4 , Theorem 11, p.49], a

surjective map

5(View) — S(Ov)

1 M, .
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Taking @1 € S(V;eg) above, and noting that for z € V]

reg?
H.z = ™((z,2)),
we obtain
(vrer) = [ Fol®) Mo (B)doy b,
Oy
where

Fot) = [ olha)dn,

for any choice of z € Vg, with pu(z) = b. By the surjectivity of 1 — My, , we
conclude that F,, 22 0 on Oy. But now

60 = [ o@)da=[ ola)ds

reg

=/ F,())db=0. N
Oy

Proposition 3.1 is now equivalent to Li’s result on H(1).

Remark 3.3: In fact, Li proves that H(1) (and, indeed, the analogous space
H(o) for an arbitrary irreducible unitary representation of O(V)) is irreducible

when restricted to the maximal parabolic subgroup of G with Levi factor isomor-

phic to GL(m) x Sp(n — m). |
Next we consider the spaces R,(V') for different V’s.

PROPOSITION 3.4:

(i) Suppose that V; and V; are quadratic spaces of dimension m which are not
isometric. Let so = 3 — pp. If m < n+ 1, then Ro(V1) and R,(V;) are
inequivalent representations of Gy.

(i) If V is a quadratic space with dim(V) = m > 2n + 2, or dim(V) = m =
2n + 2 and xv # 1, then, for sg = 3 — py,

Ra(V) = Ln(s0, xv).

Observe that this assertion follows immediately from the irreducibility of
I.(s0, x) at this point.
(ili) IfV is a split quadratic space with dim(V) = m = 2n+ 2 or 2n, then

Rﬂ(V) = I,,(So, 1)
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Proof: When x is unramified, these facts are contained in the discussion, based
on the results of 3], on pages 377-383 of [18]. We will give more or less complete
proofs here in the general case.

For any quadratic space V of dimension m let g : V® — Sym, (F) be the mo-
ment map as above, and for A € Sym,(F) let Q3 = p~*(J) be the corresponding
hyperboloid. It is a closed subset of V™. Let 15 be the character of N given by
Pa(n(b)) = Y(3tr(bB)). The following fact is well known [18]:

LEMMA 3.5:
(1) The twisted Jacquet functor S(V™) — S(V™)n 4, can be explicitly real-
ized as the restriction map S(V") — S(8p).
(i) IfQs = 9, then S(V")n .y, = 0.
(iii) If B € p(Vieg) where V3

reg

is as above, then Qg is a single O(V') orbit, and

the space

Ra(V)Nws 2 (S(Vow)) n,y, = (S(VINws) o)

is one dimensional. The map S(V") — Rn(V )Ny, is given by integration

against an O(V') invariant measure on (1.

Now if V; and V; are as in the Proposition with m < n, the sets p(V}%.,)
and p(Vy',,) are disjoint GL,(F) orbits in Sym,(F). Thus the representa-
tions R,(V1) and R,(V;) are distinguished by their twisted Jacquet spaces, by
Lemma 3.5.

Next suppose that m = n + 1, and note that 8 € Sym, (F) with det 3 # 0 is

represented by V, i.e., is in the image of the moment map, if and only if
(V) = e( B)(— det(V),det B)p.

LEMMA 3.6: If m = n+ 1 and V| and V; are inequivalent quadratic spaces of
dimension m, then there exist a # € Sym,,(F) with det 8 # 0 which is represented
by Vi but not by V.

Proof: If n > 3, and e(V}) # €(V2), we take 8 with det # = 1 and with ¢(3) =
¢(V1). Then 3 is represented by V; but not by V3. On the other hand, if ¢(V;) =
(V) and det(Vy) # det(V2), we take B with det § such that (—det(V1),det 8)r #
(- det(V2),det B)r and with €(8) = (V;)(— det(V1),det B)r. Then, again, 8 is
represented by V; but not by V. When n = 1, our assertion is well known and

can be checked by a similar argument. 1
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The combination of Lemma 3.6 and Lemma 3.5 proves that R,(V;) and R,(V;)
are inequivalent G, modules. This finishes the proof of (i) of Proposition 3.4.
Next we prove (ii). If dim(V) =m > n, let

of z whose rank, as defined above, is n. Note that Vg, C Vi,

be the subset of V™ consisting
and that V2, is

sub

the subset of V™ on which the moment map g is submersive.

Now assume that the restriction of the moment map p to
Vsub - Symn(F)

is surjective, and recall that, when this is the case, the Weil orbital integral map
[22]

S(Vaab) — S(Sym, (F))
(e qu

is surjective. In fact, by Theorem 11 of [4], the function M,, is characterized by
the fact that for any function f € §(Sym, (F)),

/ Fulx))olz) de = / F9) M, () dy,
Vi Sym,, (F)

for our fixed Haar measures dz on V" and dy on Sym, (F'). Since V.2, is open

and dense in V™, we also have
wy (wn(b))e / Y(tr(bu(z))e(z) do
=y [ )Mty dy
Sym, (F)
= 'YMw(b)‘

where ]\jf¢ is the Fourier transform of M.
Thus, since any function in $(Sym,,(F)) has the form M, for some choice of
¢, Ry(V) contains all functions in I.(s¢,x) which are supported on *he open

Bruhat cell, i.e., the space
IP"(s0,x) = {® € I.(s0, x) | support(®) C PwN}.

It is clear that this space generates I,(so, ), as a G module. Thus R,(V) =

I.(s0,x) whenever m > n and the surjectivity assumption holds. But it is easy
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to check that the required surjectivity holds precisely when V has isotropic sub-
spaces of dimension n, and that these occur for the Vs described in (ii) and (iii)

of Proposition 3.4. |
Combining this result with (i) of Proposition 2.4, we obtain:

COROLLARY 3.7: Assume that n is odd and x* = 1. Here x need not be nor-
malized. Let V; and Vi be the inequivalent quadratic spaces with dim(V;) =
dim(V3) = n+1 and xv, = xv, = x. Here, if n = 1, assume that x # 1. Then
Rn(Vi) is an irreducible G module, and

In(ov X) = Rn(Vl) 85 Rn(Vg)

Proof: Since In(0, x) is completely reducible, and we have in hand two subrep-
resentations R,(V1) and R, (V2), which are inequivalent by (i) of Proposition 3.4,
we need only exclude the possibility R,(V4) C Ra(V2). But this is excluded by
the fact that, via Lemmas 3.4 and 3.5, there exists a 8 for which Rn.(Vi)n,y, #0
but Rn(V2)n,ys = 0. Recall that the twisted Jacquet functor is exact. 1

Remark: Note that under the hypotheses of Corollary 3.7 but with m < n, we

have a submodule

R,(V1) ® Ra(V2) C In(s0,X)-

4. The N; Jacquet modules and exponents

We now let P; C G be the parabolic subgroup which stabilizes an isotropic line,
and chosen so that P, O B, our fixed Borel subgroup. Then P; = M N; where

M, ~ GLy(F) x Sp,,_1(F) = GL1(F) x Ga-1,

1 u z v -
m=(m((y 2 nl(5 p) 1zeRwver),
We compute the Jacquet functor of I(s,x) relative to Ny.

PROPOSITION 4.1: As an My ~ GL; x Sp,,_; module, the space In(s,x)n, has
two composition factors:

(i) the quotient module (x - | [****) @ In-1(s + ,X), and

(i) the submodule (x ™' - | |=**#*) ® In_1(s — }, X)-
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More precisely, there is an exact sequence

—1{ |—s 1 o
0 — X777 @ Lnma(s = 55 %) — In(s, )M,

1
L x| 140 @ Laca(s + 5,0) — 0.

Moreover, if (x ® | [*)? # 1, then this sequence splits and I,(s,x)n, is a direct
sum of the spaces (i) and (ii).

Proof: The proof is a standard calculation on Jacquet modules based simply on
the fact that there are two elements in the double coset space P,\Sp,./P;.
First, 8 is simply given by the restriction of functions to M;. Next, to describe
a, recall that [12]
G = PP [ [ Paw:i Py

with

P
and that w; commutes with the Sp(n — 1) factor of M; and acts by inversion
on the GL(1) factor. The kernel of the map /3 is the image in I.(s, x)n, of the
space Tp(s) of all ®(s) € I,(s,x) which have support in the open cell P,w;P;.
For such a function ®(s), the map to the N;-coinvariants may then be realized

via the intertwining integral

U(s)@(g):/u ®(wyug, s)du

where
1 z y 0
1. 0 0
U, = { ! 1 0 }
—tz 1,

Here we take g € M, (or even in Sp(n — 1)). Note that this function transforms
by the character [¢|~**#» of the GL(1) factor of M; [12, (1.2.9)]. Also note that,
since the support of @ is required to lie in the open cell P,w; P, this integral

will be absolutely convergent for all s. In fact, since

P \P,w, P, ~ U; x ((P, NSp(rn — 1))\Sp(n — 1)),
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there is an isomorphism
1 - 1
Tn(s) = S(Ul) ® In—l(s - 57)() = S(F )® S(F) ® In—l(s - éaX)‘
For ¢1 ® 2 ® p in the space on the right hand side, we set

S(wiu(z,y)g,5) = p1(z)p2(y)p(9)

and have
U(s)@(g) = $1(0)@2(0)¢(9)-

Thus U(s) is surjective for all s, and it is easy to check that it induces an iso-

morphism

~ 1
T(S)Nl — 11—1(3_ §»X)

It follows that the map U(s) induces the inverse of a on the subspace T(s)n, in
In(s(), X)N1 .
The direct sum property follows from the disjointness of the characters x ®

| **#» and x~!' ® | |7**#» under the hypothesis of the Proposition. |

Next we calculate R,(V )y, for a quadratic space V. If V 1s isotropic, we let
V' be the quadratic space obtained by deleting a hyperbolic plane form V. Note

that V' is unique up to isomorphism, by Witt cancelation.

PROPOSITION 4.2: Assume that x? = 1 and let V be a quadratic space with
dim(V) =m and xv = x. Let s = % — pn. Then
(i) As My ~ GL; x Sp,_,; modules, the sequence

1om 1 o
0 — x| "7% @ Limi(s0 — 5, %) — In(s0,X)N,

m 1
L X 1E @ Tnca(so + 5.%) — 0

is exact.

(i) As M; ~ GL; x Sp,,_; modules, the sequence
0— x| 1% @ Ruct (V) =5 Rul(V)w, 2 x| [F @ Ruca (V) — 0

is exact. Here, if V is isotropic, V' is the quadratic space of dimension

m — 2 defined above. If V is anisotropic, then R,_1(V"') is taken to be zero.
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(iii) The natural maps between terms of the two sequences yield a commutative

diagram
0 — xi I"-H—%L@I—l(so—%’)() — I(s0,X)N,
i1 i1
0 - X [™-2Q@R.a(V) Ra(V)n,
L X 12 ®@L-i(so+1,x) — 0
T

£ XI12®Raa(V) - 0.
Here i is the natural map, and " is a non-zero multiple of the natural map.

Proof: Part (i) is just a special case of Proposition 4.1.
Next we begin to compute R,(V)n,. Consider the exact sequence, induced by

restriction of functions to the subspace of V™ where the first component is zero:
0— X —S5(V") — x| 1Fesy)—o
@ = ¢(0]).

Here X is the kernel of the restriction map, and we view these spaces as P; x O(V)

modules. Taking N;-coinvariants, we get an exact sequence
0 — Xy, — S(V")v, — x| [T ® S(V™™!) — 0,

since Nj acts trivially on the third term. At this point it is tempting to simply
take the O(V') co-invariants:

(XN, o)~ Ra(V)n, ~— x| ¥ ® Bas(V) — 0,

but since this sequence is not necessarily left exact, we must proceed more care-
fully and give a more precise description of Xy, .

Fix a nen-zero isotropic vector 2o € V and let @3 C O(V) be the subgroup
which stabilizes the isotropic line F'- 2o =< zp >. Note that a Levi factor of @4
is isomorphic to GL(1) x O(V") where

Vi=z}/<zo>.

Also let Q9 be the subgroup of @, which fixes z,.
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Let N? = N; N N, and note that there is an isomorphism
S(V™)ne — S(h)
given by restriction of functions to
Q) ={z=[r1,23] | 21 €V, 22 € V7! with (z1,21) =0, (21,22) =0 }.

Let Q2 be the open subset of z € ; for which z; # 0. Then there is an exact
1

sequence

0 — Xyo — S(V'yp — xl|F®S(V™)—0

1t )
S(Q) S(€h)

Note that, for our fixed isotropic vector z,
Q0 =0O(V) - { [z0,2] | z €< zo > }.

Now for ¢ € S(V™), define a function ¢’ on GL(1) x V»"*~1 by

A= [ (g ", ) Deltzna)du

where z €< 2y >1 is any preimage of z'. Note that this function lies in
S(GL(1)) ® S(V"*~1) precisely when ¢ € X. Finally, for h € O(V) and ¢ € X,
define

fo(h) = (w(h)p)' € S(GL(1)) ® S(V""71).

These considerations yield the following result [8]
LEMMA 4.3: As representations of O(V') x M,
XN, ~ Indgf‘;)ﬁlM‘(a)
¢ fo

where

o =£®w1 ®w$_l)

is the representation of Q1 x M; on the space S(GL(1)) ® S(V'"™!) given as
follows: ¢ is trivial on the unipotent radical of Q1. The GL(1) in the Levi factor
of Q1 acts by the product of left translation on S(GL(1)) with the character
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| '=%. The GL(1) in M, acts by the product of right translation on S(GL(1))
with the character x| |*~1*%. Finally, the group O(V') x Sp(n — 1) acts in the
usual way, as a dual reductive pair, in the space S(V''"~!).

Finally, we compute the O(V) coinvariants in this induced representation. For
this we use the following observation. Suppose that Q is any parabolic subgroup
of H = O(V) and that (o,W) is a smooth representation of the Levi factor M
of Q, viewed as a representation of @, trivial on the unipotent radical of Q. Let
pry : W — Wy 5, be the natural projection of ¢ ® 63 to the maximal quotient
on which M acts by the character 6g. Let

b fb S0 duth)

be the H invariant linear functional, induced by some choice of a Haar measure
on H, on the space of functions on H for which ¢(gh) = ég(q)é(k) [1]. Here ég
is the modular function of Q.

LEMMA 4.4: There is a natural isomorphism
Ind§(0)y ~ om
fre f pr,(f)-
Q\H
We apply this in our case, with
W = S(GL(1)) ® S(V""1).

Note that, via 0 ® 631 , the GL(1) in the Levi factor of Q; acts on functions in
W simply by left multiplication on the GL(1) argument. We thus take

pr, : S(GL(1)) ® S(V"*~1) — R, _1(V")

given by
pr,(¢')(g) = /1; . WS () )8, 0)lt|™ 2 d%.

Note that for ¢t € F* ~ GL(1) in the Levi factor of @1, g, (t) = [t|™~2. This
yields an isomorphism (the inverse of a'):

(Xn)owvy = x| "% @ Racy(VY),
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given by

for pro(fo)(R) du(h)
Q:\O(V)

B ]{Q \o(v) /Fx (i (g, R)p)' (¢, 0)[¢™ 2 d*t dpu(h)

=F oo o (53 )kt B0, 02 )

=¢ [ ] P mete ol % duh),
Q\O(V) JFX JFn-t

So far we have a commutative diagram:

0 - Xl |"+1—% ®I"*1(50 - %7)() LN In(s(hX)Nl
i1
X PE @R (V) RV,
_ﬂ__) X; "2" ®]u~i(5(/ ! %7){) N 0
, T
L diFera) - o

The map ¢ 0 &' has image contained in the image of a, via the exactness of the

right side of the diagram, and we thus obtain a map
m ni— 1
a~loiod 1 x| I"TTE @ Ram(V) 2 (Xn)ovy — X M T @La1(s9— 5, x)-

We will now show that this map is a non-zero muitiple of the natural map '

belween these spaces. To do this, take ¢ € X and g1 € Sp(n — 1}, and let
3y o LRAN Al
Gy, 50} = wlgle{0)

be the corresponding function in I,{se,x). According to the description of «

giver above, the corresponding function in Jp_(s¢ + 1, x) is given by
U(s0)%(g:)
= / S(wyu, g1, s6) duy
Ui

= / w(wyuig1)p(0) duy
U,

=7 ‘/Ul /vw(ulgl)(p(v,O)dvdu;
= [ L eGuonstnt (P 7 Dheton)eto,0)do i
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Here 7, is the fourth root of unity which occurs in the action of w;. For a moment

we write ¢ in place of w(m( ( 1 1 ? )))w(g1 )¢, and consider the inner integral:
n-—1

/p/‘,¢(%y("’”))v(v,0) dv dy
= [ [ vmsyiey vy

- / M (y) dy
F
= <P(0)
[ ew.0)duto)
Ju=1(0)

= j{ / w(h)p(tzo, 0)]t|™ 28t dh.
\O(V) JFX

Here we have used the orbital integral map discussed above, in the casen = 1, and
have taken a suitable normalization of the linear functional §. A more detailed

discussion of the map ¢ — M, in such a situation can be found in [19 , §2].

\ 3
Replacing ¢ with w(m( < L =@ /"))w(gl e in this last formula, substituting the
1

1,.-
result into the outer integral above, and comparing the resuiting expression with

the image of f, in R,—1(V’) computed earlier, we find that the map a™ ! oioa/

18 71_'1 times the natural map, for the choice of measures we have made.

Since the natural map 7' : Ryy—1(V'} — Tu_:(s0 + %,}() is injective [18], we
conciude that o’ must be injective as well. Moreover we obtain the comutative
diagram of (iii) with ¢’ = 4,1 -4'. This concludes the proof of (ii) and (iii). Note

that (ii) is a special case of Theorem 2.8 of [8]. 1

*¥e may now use Propositions 4.1 and 4.2 to compute the exponents of the
representations I,(s,x) and R,(V) along the Borel subgroup. More precisely,
recall that U is the unipotent radical of our fixed Borel subgroup B, and that
B = AU = UA for the diagonal subgroup A as in section 1. For any admissible
representation 7 of G the exponents of 7 along B are, by definition, the characters
i of A such that a#t? occurs in a generalized eigenspace decomposition of the
Jacquet module 7. Here p = pp = (n,n—1,...,1). Since U contains Ny, we
may compute my in stages as (7n, )M, .

Suppose that (aq,aq,...,ar;b1,...,bp—r) is an ordered n-tuple of numbers
which is divided into two subsets, the first r and the last n — r. We will call
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any permutation of this set which preserves the relative ordering of the subsets a
shuffle of the set. Thus for a shuffle, a; will still come before a2, etc. Note that
the number of possible shuffles is (7).

PROPOSITION 4.5: The representation I,(s,x) has 2" exponents which may be
described as follows: For each r, with 0 < r < n, every shuffle of the n-tuple
(1=8—pn2~8—Puy.-es’ —8—pPpi8+pn—n,...,8+ps—r—1)
is an exponent. Moreover, these exponents are to be counted with multiplicity.
The exponents of Rn(V') have a similar description:

PROPOSITION 4.6: Let £ be the Witt index of V | i.e., the dimension of a maximal
isotropic subspace of V. Then for each r, with 0 < r < min(n,£), every shuffle
of the n-tuple

m m mm
(1—3,2—-2—,...,1”—5,-5'—

is an exponent of Rn(V'), and these are all of the exponents. Again, these expo-

n,...,%-—r—-l)

nents are to be counted with multiplicity.

Proof: We simply must keep track of the sequence of characters of GL(1) which
arises as we repeatedly apply either (i) or (ii) of Proposition 4.2. At each step
there will be two choices. If we take a term involving sp — § in (i) or one involving
V' in (ii), we will say that we have moved ‘left’; otherwise we will say that we
have moved ‘down’. A little inspection reveals that the exponent which arises

on the first ‘left’ move, regardless of the number of intervening ‘down’s’, will be

m
2

moves, as they occur, yield successively 3t —n, % —n 41, etc. The choice of the

1— 2. Similarly, the second ‘left’ move produces 2 — 3, etc. Likewise, the ‘down’

sequence of ‘left’ and ‘down’ moves yields an arbitrary shuffle. However, in the
case of R,(V) the number of ‘left’ moves cannot exceed the Witt index £ of V,
since each such move requires the removal of a hyperbolic plane from the part of

V which remains at that step. 1

5. Constituents and intertwining operators

With the hard work of section 4 completed, we may harvest some consequences.
First we take care of the two points where we have not yet proved the claimed

irreducibility of I,,(s, x).
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PROPOSITION 5.1: Suppose that n is even and that x* = 1. Then I,(s,x) is

irreducible at the points s =0 and s = q, i.e., at all points s € “Z

logq s
Proof: For convenience of notation, we consider the point s = 0 (the argument in
the remaining case is identical) and suppose that I,(0, x) is not irreducible. Since
we are on the unitary axis, Corollary 2.4 implies that I,(0,x) = W; & W> with
W; and W; irreducible. This implies that the exact sequence of Proposition 4.1

1 a g 1
0 — xI 17 @ Tna(= 5030~ La(0, 0w 25 x| 2 @ s (300 — 0,

splits. In fact, The image of Wi n, (say) under # must be non-zero, and hence,
since I,._l(%, x) is irreducible by Theorem 2.6, W; must map onto In_l(%, x)- If
this surjection has a non-zero kernel, the irreducibility of I,_1(—1,x) (again by
Theorem 2.6) would imply that Wi n, = I.(0,x)n~,. This in turn would force
W2, N, = 0 which contradicts the faithfulness of the Nj-Jacquet functor. Thus
the restriction of f§ to W; n, must be an isomorphism and the sequence splits, as
claimed.

But we have

LEMMA 5.2: For n even and x? = 1, the sequence

0— x| I ® Ina(- ,x) 5 L(0,0m 5 x| P ® I 1(—,x) —0
does not split.

Proof: If the sequence were split, then the GL(1) in the Levi factor M; would
act by the character x| |#~ in I,(0, x)n,. To see that this is not the case, consider

an arbitrary standard section ®(s) € I,(s, x) and an element

t=1t(a) = (( ln_1))€M"

Let r4(t) denote the action of t in the representation I,(s,x). Since ¢ acts by the
scalar x(a)lal’" in the quotient, x| |*» ® In_1(},X), the image in I,(0,x)n, of
the function

ro(t)®(0) — x(a)lal*" 2(0)

lies in the kernel of 3. Since the inverse of « is given by the integral U(0), it will
suffice to show that

U(0) [ro(£)2(0) — x(a)la|*" 2(0)] # 0
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for some choice of ®(s). Note that the integral defining U(0) only makes sense
for the difference and may not converge when applied to the individual terms.

On the other hand, for large Re(s), we may write

U(s) [ro()&(s) — x(a)lal***» @(s)] = U(s) [r(t)2()] = x(@)lal" " U(s)&(s)
= [x(@)la|™***" — x(a)lal***"] U(s)&(s),

since U(s) is then defined and intertwining on the whole space In(s, x)n,. The
quantity [x(a)|a|=*t?» — x(a)|a|**#] has a simple zero at s = 0. On the other
hand, it is shown in [12 , Proposition 1.2.4] that the intertwining operator U(s)
which is defined by the integral U(s) for sufficiently large Re(s) has a mero-
morphic analytic continuation and developes a simple pole at s = 0 when n is
even and y? = 1. There exists a standard section ®(s) for which the residue of

U(s)®(s) is non-zero at s = 0, and we then conclude that

U()- [ ro(£)2(0)  x(a)lal*" H(0) }

=90

) (U(s)' [Ts(t)Q(S) —x(a)lal””"‘l’(s)] )

= <U(S)- [n(t)@(S) —X(a)lal””"@(S)} )

=0

= ( U(s) - (rs()®(5)) ~ x(a)lal* " U(s) - B(s) )

= ( X(a)<|a|—s+”" - Ia|3+”")U(S)‘I’(3) )

s=0

s=0
— x(@)a]**(~21og |a]) - Res(U(5)%(s))
# 0.
Thus ¢ does not act by a scalar in I,,(0, x)n, and our sequence is not split. |

In particular, the representation I(0,x) must be irreducible and Proposi-

tion 5.1 is proved. |

We now turn to the points of reducibility and determine the disposition of the
submodules R,(V).
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PROPOSITION 5.3: Suppose that V; and V, are inequivalent forms such that

dim(V;) = m and xv, = xv, = X, and suppose that m > n + 1. Then, for
m

S0 = 5 — Pn,

Li(s0,X) = Ra(V1) + Ru(V2).

Proof: First observe that when sy = 0 or when sg > p,, our assertion is already
contained in Corollary 3.7 or in (ii) and (iii) of Proposition 4.2. In particular,
our claim is proved when n = 1. In general, since the N1 Jacquet functor is exact

and non-zero on all constituents of I,(s, x), it suffices to prove that
In(s(]’ X)Nl = (Rn(Vl) + Rn(%))N17

and this follows by induction on n, using (iii) of Proposition 4.2, remembering to
shift the sequence by —pp. Note that, in this induction, we need only consider
sg > 0, so that the term involving s — % is always covered by the induction
hypothesis. ]

In the discussion which follows we will need a few more conventions. For any
quadratic space V with n +1 < m = dim(V) < 2n + 2, let V; denote the
‘complementary’ quadratic space of dimension 2n+2 —m, if it exists. 'Ihis space
is determined by the condition that V 4 (—Vp) is the split space of dimension
2n 4 2, where —Vj denotes the space Vy with the negative of the original inner
product. Note that, if V,, is a maximal anisotropic subspace of V' (this is unique
up to isometry), then both V' and Vy may be obtained by adding split spaces
of suitable dimensions to V,,. In the extreme case in which V is a split space
of dimension 2n + 2, we have V) = 0. No such complementary V; exists in the
following cases:

(i) dimV =2n+2and y # 1 or y = 1 and V is quaternionic, i.e., V is the

orthogonal sum of a quaternion norm form with a split space of dimension
2n - 2.

(ii) dimV = 2n and V is quaternionic.

Whenever a space V' and its complement V; are refered to in what follows, we
implicitly assume that these possiblities (i) and (i) for V are excluded.

Recall that there is a non-degenerate sesquilinear pairing

In(s,X) ® In(=5,x) — C
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given by

< ®y(s) | B2(-3) >= /

Sym,,

) ®, (wn(b), s)®2(wn(b),—3) db

for ®,(s) € In(s,x) and ®2(—3) € I,(—3,x). For V and V, complementary, as
above, the restriction of this pairing to

R.(V)Q R,(Vs) — C

is nonzero [18 , p.369 and p.380], while, if U is any quadratic space of dimension
2n 4+ 2 — m with xy = x which is not complementary to V, then

R.(U) C R, (V)L

Thus we have
LEMMA 5.4: Suppose that V is a quadratic space with n+1 < m = dim(V) <
2n + 2, and let Vy be the complementary space. Then

dim Homg(R.(V), Ra(Vo)) # 0.

Moreover, in this case, R,(Vp) is unitarizable, and so

dim Homg(Ra(V), Ra(Va)) # 0.

Proof: First note that, for any quadratic space V, the conjugate @y v of the
Weil representation wy, v of G = Sp,(F) associated to V is equivalent to the
Weil representation wy, _v, associated to —V. Therefore, the non-triviality of
our sesquilinear pairing on R,(V) ® R,.(V;) follows from the discussion on p.380
of [18]. The unitarizability of R,(V}), given by Proposition 3.1 above, implies
that

Ra(Vo) = Ra(V0),

and immediately yields the last assertion. |
These facts will be useful in a moment.

PROPOSITION 5.5: Let Vi and V3, etc. be as in Proposition 6.3, withn +1 <
m < 2n+ 2, so that 0 < sg < pn. Assume that complementary quadratic spaces
Vi,0 and Voo exist. Then

M;(0)(Ra(Vi)) = Ra(Vio)
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and

M(s0)(In(s0, X)) = Ra(Vi,0) ® Ru(Va,0)-

Moreover, if m = 2n + 2 or 2n and x = 1, let V; be the split form and let V, be
the quaternionic form of dimension m. Then

M;(30)(In(30,1)) = M (30)(Rn(V1)) = Ra(V1,0).

Proof: At first we exclude the cases in which a complement fails to exist for one
of the spaces V;, and we also exclude the case so = 0. Then, by Proposition 4.4
of [10], we have

dim Homg(Ra(V5), In(—s0,x)) < L.

On the other hand, any intertwining map from R,(V;) to R,(V;0) yields an inter-
twining map from R,(V;) to I,(—so,x). Note that, since R,(V; o) is irreducible,
any non-zero intertwining map from R,(V;) to this space must be surjective.

Thus, by Lemma 5.4, we must have
dim Homg(RA(V;), Ra(Vip)) = 1,

and the restriction of M(so) to R,(V;) defines an element of this space. If this
element is non-zero, then its image is precisely R.(V;o).

Thus it suffices to show that M3(s¢) is non-zero on the space R,(V;). Since
M (s0) is not identically zero, it must be non-trivial on at least one R,(V;), say
R.(Vi), by Proposition 5.3. Thus we obtain M} (so)(Ra(V1)) = Ra(V1,0).

If x # 1, choose an element a € F* such that x(a) # 1. Then the space V,
may be taken to be the space V; with the inner product scaled by the factor a,

i.e., we may take V; = a - V3, in an unfortunate but temporary notation. Let

1n
Ta = ( Q. ln) € GSp,(F)

and let wy, y, be the conjugate of the Weil representation wy,v, by the outer
automorphism Ad 7, of G = Sp,,(F). Then

a
w'p’vl o~ w,/,,,,.vl ~ Wy v, -

Using this and the fact that Ad 7, preserves I,(s, x), viewed as a space of func-
tions on G, it is not difficult to check that R,(V;) and R,(V;) are switched by
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Ad 7, and similarly for R,.(V1,0) and Rp(V2,0). Finally, since

/ &(r; wn(z)gTa,s)dz = / Q((a -1 ) wn(az)r] gT,,s) dz
Sym,(F) Sym,(F) @

= X(a)lal"(’+”")""”"M,.(s)‘b(r[lg'ra),

we have

M;(s0)(Ad 74 - @) = x(a)la|™° - Ad 74 (M} (30)®).
Thus we obtain the required assertion Mj(s0)(Ra(V2)) = Rn(V2,0) by applying
Ad 7, to the corresponding assertion for R,(V;).

Next suppose that x = 1. In this case we know that the K = Sp,(O) types
in IndX (1) occur with multiplicity one [17]. This implies that the restriction
of the normalized intertwining operator M};(s) to any K type 6 in I,(s,1) is a
scalar operator Ag(s) = cg(s)-Idg where cg(s) is an entire function of s. We note
that the property

M;(—s) 0 M (s) = [bu(—3)ba(s)] ™ - Id

implies that
co(—3)co(8) = [bu(—8)ba(s)] ™!

for all 8. But then, if sy is as in our Proposition (and so # 0!), b,(s)~! vanishes
at s = ~sp and is nonzero at s = sg. Hence either cgy(s) or cg(—s) (but not both)
admits a zero at sp! On the other hand, (i) of Proposition 4.4 of [10] implies that

dim Homg(R(Vi0), In(s0,1)) = 0.

Thus any 8 which occurs in R,(V;¢) lies in the kernel of M}(—s¢) and hence
has cg(—sp) = 0 and ¢p(sp) # 0. Thus R, (V1,0) ® Rn(Va,0) lies in the image of
M} (s0). If Rn(V2) were in the kernel of M;;(sq) we would have

M;(s0)(In(s0, 1)) = M5(50)(Ra(V1) + Ra(V2))
= M;(s0)(Rn(V1))
= Rn(‘/l,O)-

Thus R,(V;) cannot lie in the kernel, unless R,(V20) = 0. But, when the
complement V; ¢ exists, the space R,(V2,0) is non-zero. This proves that R.(V2)

is not in the kernel of M} (sp) and yields our assertion.
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Next we suppose that m = n + 1 so that so = 0. We already know that
I.(0,x) = Ra(V1) ® R.(V2) and that the R,(V;)’s are irreducible and inequiv-
alent. Thus M;;(0) must be an isomorphism on at least one of the R, (V;)’s. If
x # 1, we may interchange the two constituents, as before. If y = 1, then we

again consider the cg(s)’s. Note that

(3]
bn(s,1) = ((s + pn) J] C(25 +n +1 - 2k),

k=1

with ((s) = (1 — ¢~*)7, is holomorphic at s = 0. Thus
ca(0)” = ba(0,1)7* # 0,

and so M?*(0) must be an isomorphism.
We must still check our assertions in the case m =2n+2, 2n and x = 1. This

will be done in section 6 below. 1

Remark: By (i) of Proposition 2.2, we see that a basis for the intertwining
operators from I(so,x) to In(—so,x) is given by the composition of M} (s¢)
with the projections onto the two summands of R.(Vi,0) ® Ra(V2,0). Moreover,

it follows from that same Proposition that
dim Homg(In(s0,X), Ra(Vip)) =1

fort =1, and 2. 1
Next we determine the kernel of M3 (s).
PRrOPOSITION 5.6: With the same hypotheses as in Propositions 5.3 and 5.5 with
n+l<m<2n+2 orform=2n+2 withxy=1
ker(M;(s0)) = Ra(V1) N Rn(V2).
Ifm =2n+2, and x # 1, then ker(M:(pn)) = 0. Finally, if m = n + 1 then
ker(M}(0)) = 0.

Proof: We will prove this by induction on n using Proposition 4.2. We note
first, however, that for n odd, M}(0) is an isomorphism since, by the previous

result its image is Rp(V1) @ Ra(V2) = I4(0,x). The case m =2n + 2 and x # 1
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follows from the irreducibility of I,(4pn,x), while the case m = 2n + 2 with
x = 1 will be taken care of in section 6 below.

We must then consider the case n + 1 < m < 2n + 2, and we let Y (so) =
ker(M}(sq)). For convenience we will temporarily drop x from the notation.
Applying the N1 Jacquet functor to the sequence

0 — Ya(s0) — In(50) = Rn(Vi0) ® Ru(Va,0) — 0,

where ) is the map induced by M (so), and using Proposition 4.2, we obtain:

1 1
0— Yn(SO)Nl _’In—l(so - §) e I, _1(30 + -2-)
ME32 (Ruo1(V{ ) ® Rao1(V3)) ® (Ruo1(Vi0) ® Ruo1(V20)) — 0.

Here ]
A1 In-1(s0 — 5) - Rﬂ—l(Vl’,O) ©® Rn—l(V';,o) —0

and

1
A2 i In_y(so + 5) — Rp1(Vi,0) ® Ra-1(V20) — 0.

By the remark following Proposition 5.5, we see that A; must have the same
kernel as M}_,(so — ) and A; must have the same kernel as M;_;(so + 3). By
induction, we have

ker(/\l) = Rn_l(Vll) n Rn_l(VZI)

and

ker(/\g) = R,.-](V]) n Rn_l(Vz).

Thus
Ya(s0)N, & (Rn=1(V}) N Rn1(13)) & (Ra-1(V2) N Ru-1(V2))-
On the other hand, we have
(Ra(V1) N Ru(V2)) . € (Ra(V2)) 5, N (Rn(V2)) .
and, by (ii) and (iii) of Proposition 4.2,

(R"(%))Nl N (Izn(‘/'l))N1 o (Rn—l(‘/l') N Rn—l(‘/z,)) & (Rn—l(lll) n Rn—l(%))-
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Finally, we note that, by Proposition 5.3,

Ra(V1)/(Ra(V1) N Ra(V2)) 2 In(s0, X)/ Ra(V2)-

Applying the N; Jacquet functor to this it is easy to see that, in fact,

(Ba(V1) 0 Ra(V2)) , = (Ra(V1)) 5, N (Ba(V2)) .

and this proves that

(Rn(‘/l ) n R"(%))Nl = Yn(SO)Nl .

Thus
R.(Vi) 0 R.(V3) = Ya(se)

by the non-triviality of the Jacquet functor on constituents. |

6. Exponents and composition series

In order to complete our description of the composition series of the representa-
tion I,(s,x) at points of reducibility, we will now make a more detailed study of
the exponents and their multiplicities.

Recall that, by Proposition 4.5, for sy = 5 — E,l,i the exponents of I,{s¢, x)

are obtained as shuffles of sequences

m m m m

m
(1—3,2—3,...,r——2—;3—n,.. ——-r-1)

g
where 0 < r < n. For convenience we will denote this exponent by E, = E,(m)
and will let

and

Br=(-gl—n,...,-rg—r—1)

denote the first and second blocks in E,. Thus E, = (A,; B,). We will omit the
m uuless more than one value is being considered. Recall also that a shuffle of
E, is any permutation in which the ordering of elements of A, is preserved and
the ordering of elements of B, is preserved.

Now if V with dimV = m is a quadratic space for which R.(V) C I,(so, X),
the exponents of R, (V) are obtained as shuffles of E,’s for r’s which do not

exceed the Witt index (dimension of a maximal isotropic subspace) of V.
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The main case of interest to us willbe x # 1 and n+1 < m < 2n. In this case,
there will be two spaces V; and V; of dimension m, of opposite Hasse invariants,
and both of Witt index 7+ — 1. Let V;o be the complementary space to V; as
in section 5 above, and recall that dimV; = m' is determined by the condition
m + m’ = 2n + 2. We have shown that

Io(s0,X) = Rn(V1) + Ra(V2)

and that R,(Vi,0) ® Rn(V2,0) is a submodule of I,(—s0,x). Moreover, since
X # 1, we have seen that there is an outer automorphism of G which preserves
the representation In(so, x) (resp. In(—so,X) ) and interchanges the submodules
R,(V1) and R.(V;) (resp. Rn(V1,) and R,(V2,)). Since this outer automor-
phism preserves the Borel subgroup, our fixed maximal split torus, etc., it pre-
serves exponents. Thus the submodules R,(V}) and R,(V2) (resp. R.(Vi,0) and

R,(V,,6)) have the same set of exponents.

LEMMA 6.1: The set of exponents of I,(so,x) which occur as shuffles of E.(m)’s
with r > 2 is identical to the set of exponents of Rn(Viy0)-

Proof: The exponents of R,(V) ) are shuffles of

ml ml ) ml TTL’ !

E,f(m')=(1—?,2—7,...,r —3-;—2———n,...,m?-r'—1)
for0 <+ < mT' — 1. But now observe that
1——Z7i=—n1—n and Zl—,-—-n=1—ﬂ.
2 2 2 2
Also, setting r = n —1', so that 3+ < r < n, we have
r'—-n2i'=%l-—r—1 and %—r—l:r'—m?l.

Thus Aq(m') = B,(m) and Bn(m') = A,(m), and the set of shuffles of E,.(m')
coincides with the set of shuffles of E.(m). This gives the required identification

of exponents. |

Note that the set of exponents here are the ones whose full multiplicity does
not occur in R,(Vi). Also note that since In(so,x) = Ra(V1) + R,(V2), the
exponents which occur outside of R,(V1) must occur in R,(V2), and hence, since
R.(V1) and R.(V;) have the same exponents, must be repeated inside of R,.(W1).
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Our goal now is to investigate the multiplicities of the exponents. To do this
it is useful to formulate the combinatorial problem involved more abstractly.

Suppose that m and n are given positive integers with m even and with n+1 <
m < 2n. Let R be the set of sequences (counted with multiplicities) which arise
as shuffles of sequences E, defined as above, with 0 < r < 2 — 1. Similarly, let
S be the set of sequences (counted with multiplicities) which arise as shuffles of

sequences E, for 7 < s < n. Finally, let I = RUS, again counting multiplicities.

PROPOSITION 6.2:
(i) S C R, i.e., the shuffles of E, all occur as shuffles of E,
(ii) I —2S = R - S is of multiplicity 1. Moreover,

(I-28)NnS=(R-5)NnS=0.

Thus the shuffles which remain after the overlap of R and S is removed are

all distinct and do not occur in the set S.
Proof: First observe:

LEMMA 6.3: A shuffle of E, and a shuffle of E, can coincide only if either r = s

orr+s=m-—1.

Proof: Since each block in E, is strictly increasing, the largest component of E,
is max(r — 3,5 —r — 1). If a shuffle of E, coincides with a shuffle of E,, then

we must have, in particular,

m m m m
max(r—E,;—r—l):max(s—;,a——s—l),

and hence either r=sorr+4+s=m—1, |

Thus we may as well fix r and s with r + s =m — 1 and

m m
<r < —-— — < s<n,
0_r_2 1<2__s_n
Let
m m m
=(l-—2-—=,...,——n-—
(24 (1 K 2, 72 n 1)’
8= g——n,...,r—ig—
=(—T§—n,..,g—s—1)

and



248 S. S. KUDLA AND S. RALLIS Isr. J. Math.

7=(r+1—-%,...,%—r—-1).

Here each sequence increases by 1 in each step. Then, because of the conditions

we have imposed on r, 3, m and n, we may write

E = (ayﬂl;ﬂZa‘Y)

and
EJ = (a’ ﬂ', Y5 ﬂ”)’

Here in the expression for E, (resp. E,) we write 8, and §; (resp. 8’ and 3")
to distinguish the two copies of f. Now we claim that any shuffle of E, can be
obtained as a shuffle of E,, and that the procedure for obtaining this shuffle from
that of E, will yield distinct results of distinct shuffles of E, ( here we keep track
of the actual shuffle and not just of the sequence which it creates).

For an arbitrary shuffle of E,, let L(3"') be the initial segment of 3" consisting
of elements which are moved to the left of some element of a, and let R(S") be
the terminal segment of 3" consisting of elements which are moved to the right

of some element of v. Then write

B" = (L(B"), M(B"), R(8")),

where M(f'"") is what remains. Note that M(A') might be empty. The given

shuffle of E; can be written as

(Sh(a; L(B")), Sh(B"; M(B")), Sh(v; R(8"))),

where the Sh(z;y)’s denote shuffles of the sequences  and y. The first and
last shuffles here may be realized in a unique way as part of a shuffle of E, as
Sh(a; L(82)) and Sh(vy; R(B1)) respectively. Thus we must prove that the middle
shuffle

Sh(L(B"), M(8"), R(B"); M(B"))

is uniquely realizable as a shuffle

Sh(L(B1), M(B1); M(Bz), R(B2)),

of the remaining parts of §; and ;. Note that this is precisely of the same form

as our original problem. Thus we will be done by induction on n provided the
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length has been reduced by the first step. The length is not reduced if and only
if both « and f are empty, so that our original series were E, = (f;;8;) and
E, =(f'; 8"). But the shuffles of these two are in obvious bijection. Note that if
n = 1 in the original problem, then 8 and one of a and « is empty, so that there
is nothing to prove.

To prove the remaining assertions of the Proposition, we will show that, given
a sequence which arises from a shuffle of E, either we can uniquely recover the
shuffle from the given sequence, and hence the sequence will have multiplicity one
as an exponent, or the sequence arises as a shuffle of E,. Moreover, in the second
case, we will show that every shuffle of E, which yields the given sequence is one
of the shuffles which is matched to a shuffle of E, by the algorithm above. Note
that the second case occurs, i.e., the given sequence may be obtained by a shuffle
of E,, if and only if it contains the subsequence («, 8,7) and the complement of
this subsequence is 8. These assertions will again be proved by induction on n.

Consider a sequence X which arises by an arbitrary shuffle of E,. Let L(X)
be the set of entries of X from # which occur in X to the left of some element
of a and let R(X) be the set of entries of X from § which occur to the right of
some element of v. Let L(#) and R(8) denote the corresponding subsets of 3.
Note that L(B) (resp. R(#)) it an initial (resp. final) subsequence of 3, so that
we may write

B = L(B)B* = BRR(B)

for certain subsequences % and B®. Note that elements of L(X) must have come
from B, while elements of R(X) must have come from S;.

Now if some element of ¥ occurs to the left of some element of «a, then L(f) =
B = R(B). In this case there is a unique shuffle which yields X and X cannot
arise from a shuflle of E,.

Similarly, if L(8) U R(8) = 8, then the source of all remaining entries of X
which come from f is determined uniquely. Thus, again, there is a unique shuffle
which gives rise to X.

We may then suppose that all elements of @ in X lie to the left of all elements
of 4, and that

for some non-empty sequence M(f). The sequence X then has the form

(Sh(a; L(B2)), SR(L(B1), M(B1); M(B2), R(B2)), Sh(; R(51))),
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in the notation introduced above.

Reversing the procedure used before, we can realize the first and last of these
shuffles in a unique way as part of a shuffle of E,, i.e., as Sh(a; L(8")) and
Sh(y; R(8")). It then remains to prove that the remaining sequence

Sh(L(81), M(B1); M(B2), R(B2)),

either has a unique expression as a shuffle of

(L(,Bl ) M(Br); M(ﬂz), R(ﬂz)),

or that every shuffle which yields this sequence is matched to a unique shuffle of

(L(B"), M(B"), R(B"); M(B"))-

Once again, this problem has the same form as our original one so that we are
done, by induction on n, provided that we have indeed shortened the sequence
X by the steps above.

To complete the proof, we must observe what happens when n is not reduced
in the first step, i.e., when a and v are empty. In this case, E, = (f;; ;) and
E, = (8; 8), so that the two sets of shuffles coincide, and we are done. 1

Proposition 6.2 has several useful consequences.

First let us assume that we are in the case x # 1, x? = 1 with sg = 2 — p,, for
n+1<m< 2n. Let Wi, Vz, Vi and V, o be as above, and let R be the set of
exponents of I,,(se, x) which arise from shuffles of E,(m})’s with 0 <r < 1.
Let S be the set of exponents which arise from shuffles of E.(m)’s with 3 <r <
n. Elements of both of these sets are counted with multiplicity. Finally, let D
denote the set of exponents R — S, which is well defined by (i) of Proposition 6.2
and which is multiplicity free by (ii) of that Proposition.

PROPOSITION 6.4:
(i) R is the set of exponents of Ry(V;), fori =1, 2.
(i) S is the set of exponents of Ra(V;p), fori =1, 2.
(iii) D is the set of exponents of Ra(V1)N Ra(V2) and of In(=s0, X)/(Rn(V1,0)®
R.(V2,0))-
Proof: Parts (i) and (i) are just restatements of earlier results. To prove (iii)
note that, since ker M2(s0) = Ra(V1) N Ra(V2), by Proposition 5.6, we have

Ra(V1)/(Ra(V1) N Ra(V2)) = Ra(V10)-
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Our claim now follows from (i), (ii), Proposition 6.2 and the exactness of the

Jacquet functor. |

PROPOSITION 6.5: For m, sg, etc., as above,
ker(M;(—s0)) = Ra(V1,0) ® Rn(V2,0),

and

Im(M?(~30)) = Ru(Vi) N Ru(V).

Proof: Let U be the unipotent radical of our fixed Borel subgroup B. The
U-Jacquet module I,(sq, x)v, which is a complex vector space of dimension 2",
may then be decomposed according to the exponents, which give the action of

the maximal split torus A. We then obtain a decomposition
L.(so,x)u =X 8Y,

stable under the action of A, where X is the subspace with exponentsin S and Y
is the subspace with exponents in D. Note that the simplicity of the exponents
in D implies that there is a basis for Y, unique up to scalars, consisting of
eigenvectors for the action of 4 . Since the exponents of I,,(s, x) are holomorphic
functions of s, there is an open neighborhood of sy on which the exponents
interpolating those in D remain simple and disjoint from those interpolating
exponents in § = R — D. Thus, for s in this neighborhood, we still have a

decomposition

L(s,x)u = X(s) © Y (s)-

Note that
Y = ¥(s0) = (Ra(¥3) N Ra(V2))y -

Similarly, we have a decomposition
In(=s0,X)u = X(—50) ® Y(—30)
and an extension of this
In(—s,x)u = X(-s) @Y (—s)

to a neighborhood of —sg. Now the normalized intertwining operators induce

operators M;(s,x)u and My(—s,x)u on the U-Jacquet functors. If A = A(s)
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is an exponent in D(s) (the space of exponents extending those in D), and if
v(s) € Y(s) (resp. v(—s) € Y(—s)) is a corresponding eigenvector, chosen to

depend holomorphically on s, we must have

Mz (s, x)uv(s) = p(s)v(—s)
and
Mi(—s,x)uv(—3) = v(s)v(s)

for some holomorphic functions p(s) and v(s). Note that p(s) has a zero at
s = 8g since Rp(V1) N R,(V2) is the kernel of M}(so,x). On the other hand, the
fact that

M (—s,x) o My(s,x) = na(s,x) - 1d,
implies that
u(s) - uls) = n(s)
has a simple zero at s = sg and hence that

l/(So) # 0.

Thus M2 (—so, X)u is non-zero on Y (—sg). Since we already know that R,(V1,0)®
R,(Va,0) lies in the kernel of M;;(—s0, x), we must have

X(—s0) = (Bna(V1,0) ® Ra(V2,0))y = ker(My(=s0,X)v),

and hence that
Ra(Vi,0) ® Ra(V2,0) = ker(M(—s0,X))

by the exactness of the U-Jacquet functor.
It follows immediately that

Im(M; (=30, X)v) = (Ra(V1) N Ra(V2))y

and hence that
Rn(V1) N Ra(V2) = Im(M(—30, X)),
as claimed. |

Finally we can finish our determination of the composition series of In(so,X).
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PROPOSITION 6.6: For y # 1l andforn+1 <m < 2n,
Ru(‘/l ) N Rn(VQ)

is irreducible.

Proof: Suppose that W C R,(Vi)NR,(V2) is a non-zero irreducible submodule.
Then the argument of the proof of Theorem 2.6 implies that there is a non-zero
intertwining operator

T : In(=s0,x) — W C In(30,X)-

By (i) of Proposition 2.2, T must be a non-zero multiple of M (—s¢,x). But we
have just seen that the image of M(—so,x) is Ra(V1) N R,.(V2). |

We next turn to the case y = 1 and assume that n + 1 < m < 2n. As before,
let V; be the split form and let V; be the quaternionic form of dimension m. Also
let V10 and V3,0 be the complementary forms of dimension m' = 2n + 2 — m.
Let R and S be the set of exponents defined above (note that the exponents of
I.(s,x) do not depend on x), and let Ry be the subset of R consisting of those
exponents which arise as shuffles of E,’s with 0 <r < % —2. Alsolet Sp C §
be the subset consisting of those exponents which arise as shuffles of E,’s with
r > 7. By Lemma 6.3, note that exponents in Sy can only match exponents in
Ry. Applying Proposition 6.2 and the argument of the proof of Lemma 6.1, we
have

PROPOSITION 6.7:
(i) RU(S —5y) is the set of exponents of R, (V1) and R, is the set of exponents
of R,(V2).
(i1) SU(R—Ry) is the set of exponents of R,(V o) and Sy is the set of exponents
of Rao(Vap).
(ili) Ro D So and Ry — Sy is simple and disjoint from S,.
(iv) R— Ry D S—Sp and (R— Ry)— (S~ Sy) is simple and disjoint from S ~ S,.
(v) Rg — Sg is the set of exponents of Rno(V1) 0 Rp(V3).

By the same arguments as before Proposition 6.7 yields:

PROPOSITION 6.8: Forx =1andforn+1<m < 2n,

ker(My(—s0)) = Ra(V1,0) ® Rn(Vay),
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and

In(M(~s0)) = Ru(Vi) N Ra(V2).

PROPOSITION 6.9: Forx =1 andforn+1 < m < 2n,
R.(Vi) N R,(V2)

is irreducible.

Finally, we consider the cases x = 1 and m = 2n of 2n + 2.

First suppose that m = 2n. Then, since the E.(m)’s have the form
1-n2-n,...,r—n;0,...,n—r —1),

distinct shuffles of a given E, yield distinct exponents, and the only possible
overlaps occur for r +r' =2n—1,i.e., for r =n—1and ' = n. In fact, the only

non-simple exponent is
(1-n,2-n,...,0),

which occurs with multiplicity 2. The shuffles of E, for r = n and n — 1 are the
exponents of R, (Vi) while the exponents of R.(V;) are all simple, and do not
overlap with those of R, (V4 ).

Next suppose that m = 2n + 2. Then all of the exponents are simple, and the

only exponent which does not occur in R,(V2) is
(-n,1—n,...,~1) = —pp.

This is the unique exponent of the trivial subrepresentation R,{(Vig) = C of

In(~pn,1).
With this information we can complete the proof of Propositions 5.5 and 5.6.

End of the proof of Proposition 5.5 and Proposition 5.6: Recall that V is the
split space and let V; is the quaternionic space of dimension m = 2n or 2n 4 2.
Then there is no complementary space for V,. By (ii) of the Proposition 4.4 of
[10], we have

dim Homg(Rn(V2), In(—$0,X)) = 0,

while by (iii) of Proposition 3.4 above, we have R,(V1) = In(s0,1). Since

bn(s,l)_lbn(—s, 1)_1
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has a simple zero at sp, the K type argument of the first part of the proof of
Proposition 5.5 again shows that R,(V) o) is contained in the image of M}(se).
But now the faithfulness of the U-Jacquet functor on constituents and description
of the exponents just given imply that R,(V},0) must be precisely the image of
M} (s0) and R,(V;) must be precisely its kernel. |

Finally, we have the analogue of Propositions 6.6 and 6.9.
PROPOSITION 6.10: If m = 2n or 2n+ 2 and x = 1 then the submodule R,(V2)

associated to the quaternionic form V3 of dimension m is irreducible.

The proof is the same.
The following is a very special case of the Howe duality conjecture [6,21)]. Note
that we allow residue characteristic 2.

COROLLARY 6.11: R,(V) has a unique irreducible quotient.
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